000 12464nam a2200553 a 4500
001 EBC1185176
003 MiAaPQ
005 20240120135053.0
006 m o d |
007 cr cn|||||||||
008 120411s2010 enkad sb 001 0 eng d
010 _z 2012397271
020 _z9781847558060 (hbk.)
020 _z1847558062 (hbk.)
020 _a9781849730983 (electronic bk.)
035 _a(MiAaPQ)EBC1185176
035 _a(Au-PeEL)EBL1185176
035 _a(CaPaEBR)ebr10627698
035 _a(CaONFJC)MIL872472
035 _a(OCoLC)823728351
040 _aMiAaPQ
_cMiAaPQ
_dMiAaPQ
050 4 _aQC145.4.T5
_bA67 2010
245 0 0 _aApplied thermodynamics of fluids
_h[electronic resource] /
_cedited by A.R.H. Goodwin, J.V. Sengers, C.J. Peters.
260 _aCambridge :
_bRSC Pub.,
_cc2010.
300 _axxiii, 509 p. :
_bill.
504 _aIncludes bibliographical references and index.
505 0 0 _gMachine generated contents note:
_gch. 1
_tIntroduction /
_rJ. Peters --
_tReferences --
_gch. 2
_tFundamental Considerations /
_rCor J. Peters --
_g2.1.
_tIntroduction --
_g2.2.
_tBasic Thermodynamics --
_g2.2.1.
_tHomogeneous Functions --
_g2.2.2.
_tThermodynamic Properties from Differentiation of Fundamental Equations --
_g2.3.
_tDeviation Functions --
_g2.3.1.
_tResidual Functions --
_g2.3.2.
_tEvaluation of Residual Functions --
_g2.4.
_tMixing and Departure Functions --
_g2.4.1.
_tDeparture Functions with Temperature, Molar Volume and Composition as the Independent Variables --
_g2.4.2.
_tDeparture Functions with Temperature, Pressure and Composition as the Independent Variables --
_g2.5.
_tMixing and Excess Functions --
_g2.6.
_tPartial Molar Properties --
_g2.7.
_tFugacity and Fugacity Coefficients --
_g2.8.
_tActivity Coefficients --
_g2.9.
_tThe Phase Rule --
_g2.10.
_tEquilibrium Conditions --
_g2.10.1.
_tPhase Equilibria --
_g2.10.2.
_tChemical Equilibria --
_g2.11.
_tStability and the Critical State --
_g2.11.1.
_tDensities and Fields --
_g2.11.2.
_tStability.
505 0 0 _g2.11.3.
_tCritical State --
_tReferences --
_gch. 3
_tThe Virial Equation of State /
_rJ. P. Martin Trusler --
_g3.1.
_tIntroduction --
_g3.1.1.
_tTemperature Dependence of the Virial Coefficients --
_g3.1.2.
_tComposition Dependence of the Virial Coefficients --
_g3.1.3.
_tConvergence of the Virial Series --
_g3.1.4.
_tThe Pressure Series --
_g3.2.
_tTheoretical Background --
_g3.2.1.
_tVirial Coefficients of Hard-Core-Square-Well Molecules --
_g3.3.
_tThermodynamic Properties of Gases --
_g3.3.1.
_tPerfect-gas and Residual Properties --
_g3.3.2.
_tHelmholtz Energy and Gibbs Energy --
_g3.3.3.
_tPerfect-Gas Properties --
_g3.3.4.
_tResidual Properties --
_g3.4.
_tEstimation of Second and Third Virial Coefficients --
_g3.4.1.
_tApplication of Intermolecular Potential-energy Functions --
_g3.4.2.
_tCorresponding-states Methods --
_tReferences --
_gch. 4
_tCubic and Generalized van der Waals Equations of State /
_rIoannis G. Economou --
_g4.1.
_tIntroduction --
_g4.2.
_tCubic Equation of State Formulation --
_g4.2.1.
_tThe van der Waals Equation of State (1873) --
_g4.2.2.
_tThe Redlich and Kwong Equation of State (1949).
505 0 0 _g4.2.3.
_tThe Soave, Redlich and Kwong Equation of State (1972) --
_g4.2.4.
_tThe Peng and Robinson Equation of State (1976) --
_g4.2.5.
_tThe Patel and Teja (PT) Equation of State (1982) --
_g4.2.6.
_tThe α Parameter --
_g4.2.7.
_tVolume Translation --
_g4.2.8.
_tThe Elliott, Suresh and Donohue (ESD) Equation of State (1990) --
_g4.2.9.
_tHigher-Order Equations of State Rooted to the Cubic Equations of State --
_g4.2.10.
_tExtension of Cubic Equations of State to Mixtures --
_g4.3.
_tApplications --
_g4.3.1.
_tPure Components --
_g4.3.2.
_tOil and Gas Industry -- Hydrocarbons and Petroleum Fractions --
_g4.3.3.
_tChemical Industry -- Polar and Hydrogen Bonding Fluids --
_g4.3.4.
_tPolymers --
_g4.3.5.
_tTransport Properties --
_g4.4.
_tConclusions --
_tReferences --
_gch. 5
_tMixing and Combining Rules /
_rStanley I. Sandler --
_g5.1.
_tIntroduction --
_g5.2.
_tThe Virial Equation of State --
_g5.3.
_tCubic Equations of State --
_g5.3.1.
_tMixing Rules --
_g5.3.2.
_tCombining Rules --
_g5.3.3.
_tNon-Quadratic Mixing and Combining Rules --
_g5.3.4.
_tMixing Rules that Combine an Equation of State with an Activity-Coefficient Model.
505 0 0 _g5.4.
_tMulti-Parameter Equations of State --
_g5.4.1.
_tBenedict, Webb, and Rubin Equation of State --
_g5.4.2.
_tGeneralization with the Acentric Factor --
_g5.4.3.
_tHelmholtz-Function Equations of State --
_g5.5.
_tMixing Rules for Hard Spheres and Association --
_g5.5.1.
_tMixing and Combining Rules for SAFT --
_g5.5.2.
_tCubic Plus Association Equation of State --
_tReferences --
_gch. 6
_tThe Corresponding-States Principle /
_rJames F. Ely --
_g6.1.
_tIntroduction --
_g6.2.
_tTheoretical Considerations --
_g6.3.
_tDetermination of Shape Factors --
_g6.3.1.
_tOther Reference Fluids --
_g6.3.2.
_tExact Shape Factors --
_g6.3.3.
_tShape Factors from Generalized Equations of State --
_g6.4.
_tMixtures --
_g6.4.1.
_tvan der Waals One-Fluid Theory --
_g6.4.2.
_tMixture Corresponding-States Relations --
_g6.5.
_tApplications of Corresponding-States Theory --
_g6.5.1.
_tExtended Corresponding-States for Natural Gas Systems --
_g6.5.2.
_tExtended Lee-Kesler --
_g6.5.3.
_tGeneralized Crossover Cubic Equation of State --
_g6.6.
_tConclusions --
_tReferences --
_gch. 7
_tThermodynamics of Fluids at Meso and Nano Scales /
_rChristopher E. Bertrand.
505 0 0 _g7.1.
_tIntroduction --
_g7.2.
_tThermodynamic Approach to Meso-Heterogeneous Systems --
_g7.2.1.
_tEquilibrium Fluctuations --
_g7.2.2.
_tLocal Helmholtz Energy --
_g7.3.
_tApplications of Meso-Thermodynamics --
_g7.3.1.
_tVan der Waals Theory of a Smooth Interface --
_g7.3.2.
_tPolymer Chain in a Dilute Solution --
_g7.3.3.
_tBuilding a Nanoparticle Through Self Assembly --
_g7.3.4.
_tModulated Fluid Phases --
_g7.4.
_tMeso-Thermodynamics of Criticality --
_g7.4.1.
_tCritical Fluctuations --
_g7.4.2.
_tScaling Relations --
_g7.4.3.
_tNear-Critical Interface --
_g7.4.4.
_tDivergence of Tolman's Length --
_g7.5.
_tCompetition of Meso-Scales --
_g7.5.1.
_tCrossover to Tricriticality in Polymer Solutions --
_g7.5.2.
_tTolman's Length in Polymer Solutions --
_g7.5.3.
_tFinite-size Scaling --
_g7.6.
_tNon-Equilibrium Meso-Thermodynamics of Fluid Phase Separation --
_g7.6.1.
_tRelaxation of Fluctuations --
_g7.6.2.
_tCritical Slowing Down --
_g7.6.3.
_tHomogeneous Nucleation --
_g7.6.4.
_tSpinodal Decomposition --
_g7.7.
_tConclusion --
_tReferences --
_gch. 8
_tSAFT Associating Fluids and Fluid Mixtures /
_rAmparo Galindo.
505 0 0 _g8.1.
_tIntroduction --
_g8.2.
_tStatistical Mechanical Theories of Association and Wertheim's Theory --
_g8.3.
_tSAFT Equations of State --
_g8.3.1.
_tSAFT-HS and SAFT-HR --
_g8.3.2.
_tSoft-SAFT --
_g8.3.3.
_tSAFT-VR --
_g8.3.4.
_tPC-SAFT --
_g8.3.5.
_tSummary --
_g8.4.
_tExtensions of the SAFT Approach --
_g8.4.1.
_tModelling the Critical Region --
_g8.4.2.
_tPolar Fluids --
_g8.4.3.
_tIon-Containing Fluids --
_g8.4.4.
_tModelling Inhomogeneous Fluids --
_g8.4.5.
_tDense Phases: Liquid Crystals and Solids --
_g8.5.
_tParameter Estimation: Towards more Predictive Approaches --
_g8.5.1.
_tPure-component Parameter Estimation --
_g8.5.2.
_tUse of Quantum Mechanics in SAFT Equations of State --
_g8.5.3.
_tUnlike Binary Intermolecular Parameters --
_g8.6.
_tSAFT Group-Contribution Approaches --
_g8.6.1.
_tHomonuclear Group-Contribution Models in SAFT --
_g8.6.2.
_tHeteronuclear Group Contribution Models in SAFT --
_g8.7.
_tConcluding Remarks --
_tReferences --
_gch. 9
_tPolydisperse Fluids /
_rDieter Browarzik --
_g9.1.
_tIntroduction --
_g9.2.
_tInfluence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution.
505 0 0 _g9.3.
_tApproaches to Polydispersity --
_g9.3.1.
_tThe Pseudo-component Method --
_g9.3.2.
_tContinuous Thermodynamics --
_g9.4.
_tApplication to Real Systems --
_g9.4.1.
_tPolymer Systems --
_g9.4.2.
_tPetroleum Fluids, Asphaltenes, Waxes and Other Applications --
_g9.5.
_tConclusions --
_tReferences --
_gch. 10
_tThermodynamic Behaviour of Fluids near Critical Points /
_rMikhail A. Anisimov --
_g10.1.
_tIntroduction --
_g10.2.
_tGeneral Theory of Critical Behaviour --
_g10.2.1.
_tScaling Fields, Critical Exponents, and Critical Amplitudes --
_g10.2.2.
_tParametric Equation of State --
_g10.3.
_tOne-Component Fluids --
_g10.3.1.
_tSimple Scaling --
_g10.3.2.
_tRevised Scaling --
_g10.3.3.
_tComplete Scaling --
_g10.3.4.
_tVapour-Liquid Equilibrium --
_g10.3.5.
_tSymmetric Corrections to Scaling --
_g10.4.
_tBinary Fluid Mixtures --
_g10.4.1.
_tIsomorphic Critical Behaviour of Mixtures --
_g10.4.2.
_tIncompressible Liquid Mixtures --
_g10.4.3.
_tWeakly Compressible Liquid Mixtures --
_g10.4.4.
_tCompressible Fluid Mixtures --
_g10.4.5.
_tDilute Solutions --
_g10.5.
_tCrossover Critical Behaviour --
_g10.5.1.
_tCrossover from Ising-like to Mean-Field Critical Behaviour.
505 0 0 _g10.5.2.
_tEffective Critical Exponents --
_g10.5.3.
_tGlobal Crossover Behaviour of Fluids --
_g10.6.
_tDiscussion --
_tAcknowledgements --
_tReferences --
_gch. 11
_tPhase Behaviour of Ionic Liquid Systems /
_rCor J. Peters --
_g11.1.
_tIntroduction --
_g11.2.
_tPhase Behaviour of Binary Ionic Liquid Systems --
_g11.2.1.
_tPhase Behaviour of (Ionic Liquid + Gas Mixtures) --
_g11.2.2.
_tPhase Behaviour of (Ionic Liquid + Water) --
_g11.2.3.
_tPhase Behaviour of (Ionic Liquid + Organic) --
_g11.3.
_tPhase Behaviour of Ternary Ionic Liquid Systems --
_g11.3.1.
_tPhase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic) --
_g11.3.2.
_tPhase Behaviour of (Ionic Liquid + Aliphatic + Aromatic) --
_g11.3.3.
_tPhase Behaviour of (Ionic Liquid + Water + Alcohol) --
_g11.3.4.
_tPhase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures --
_g11.4.
_tModeling of the Phase Behaviour of Ionic Liquid Systems --
_g11.4.1.
_tMolecular Simulations --
_g11.4.2.
_tExcess Gibbs-energy Methods --
_g11.4.3.
_tEquation of State Modeling --
_g11.4.4.
_tQuantum Chemical Methods --
_tReferences --
_gch. 12
_tMulti-parameter Equations of State for Pure Fluids and Mixtures /
_rRoland Span.
505 0 0 _g12.1.
_tIntroduction --
_g12.2.
_tThe Development of a Thermodynamic Property Formulation --
_g12.3.
_tFitting an Equation of State to Experimental Data --
_g12.3.1.
_tRecent Nonlinear Fitting Methods --
_g12.4.
_tPressure-Explicit Equations of State --
_g12.4.1.
_tCubic Equations --
_g12.4.2.
_tThe Benedict-Webb-Rubin Equation of State --
_g12.4.3.
_tThe Bender Equation of State --
_g12.4.4.
_tThe Jacobsen-Stewart Equation of State --
_g12.4.5.
_tThermodynamic Properties from Pressure-Explicit Equations of State --
_g12.5.
_tFundamental Equations --
_g12.5.1.
_tThe Equation of Keenan, Keyes, Hill, and Moore --
_g12.5.2.
_tThe Equations of Haar, Gallagher, and Kell --
_g12.5.3.
_tThe Equation of Schmidt and Wagner --
_g12.5.4.
_tReference Equations of Wagner --
_g12.5.5.
_tTechnical Equations of Span and of Lemmon --
_g12.5.6.
_tRecent Equations of State.
505 0 _aNote continued--
505 0 0 _g13.6.
_tConcluding Remarks --
_tReferences --
_gch. 14
_tApplied Non-Equilibrium Thermodynamics /
_rDick Bedeaux --
_g14.1.
_tIntroduction --
_g14.1.1.
_tA Systematic Thermodynamic Theory for Transport --
_g14.1.2.
_tOn the Validity of the Assumption of Local Equilibrium --
_g14.1.3.
_tConcluding remarks --
_g14.2.
_tFluxes and Forces from the Second Law of Thermodynamics --
_g14.2.1.
_tContinuous phases --
_g14.2.2.
_tMaxwell-Stefan Equations --
_g14.2.3.
_tDiscontinuous Systems --
_g14.2.4.
_tConcluding Remarks --
_g14.3.
_tChemical Reactions --
_g14.3.1.
_tThermal Diffusion in a Reacting System --
_g14.3.2.
_tMesoscopic Description Along the Reaction Coordinate --
_g14.3.3.
_tHeterogeneous Catalysis --
_g14.3.4.
_tConcluding Remarks --
_g14.4.
_tThe Path of Energy-Efficient Operation --
_g14.4.1.
_tAn Optimisation Procedure --
_g14.4.2.
_tOptimal Heat Exchange --
_g14.4.3.
_tThe Highway Hypothesis for a Chemical Reactor --
_g14.4.4.
_tEnergy-Efficient Production of Hydrogen Gas --
_g14.4.
_tConclusions --
_tReferences.
533 _aElectronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
650 0 _aFluids
_xThermal properties.
655 4 _aElectronic books.
700 1 _aGoodwin, A. R. H.
700 1 _aSengers, J. V.
700 1 _aPeters, Cor J.
710 2 _aRoyal Society of Chemistry (Great Britain)
710 2 _aInternational Union of Pure and Applied Chemistry.
_bPhysical and Biophysical Chemistry Division.
710 2 _aInternational Association of Chemical Thermodynamics.
710 2 _aProQuest (Firm)
856 4 0 _uhttps://ebookcentral.proquest.com/lib/bacm-ebooks/detail.action?docID=1185176
_zClick to View
999 _c95675
_d95675