000 | 06145nam a22004573i 4500 | ||
---|---|---|---|
001 | EBC6882488 | ||
003 | MiAaPQ | ||
005 | 20240122001521.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 231124s2022 xx o ||||0 eng d | ||
020 |
_a9783030893972 _q(electronic bk.) |
||
020 | _z9783030893965 | ||
035 | _a(MiAaPQ)EBC6882488 | ||
035 | _a(Au-PeEL)EBL6882488 | ||
035 | _a(OCoLC)1299382308 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA370-380 | |
100 | 1 | _aSeifert, Christian. | |
245 | 1 | 0 |
_aEvolutionary Equations : _bPicard's Theorem for Partial Differential Equations, and Applications. |
250 | _a1st ed. | ||
264 | 1 |
_aCham : _bSpringer International Publishing AG, _c2022. |
|
264 | 4 | _c�2022. | |
300 | _a1 online resource (321 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aOperator Theory: Advances and Applications Series ; _vv.287 |
|
505 | 0 | _aIntro -- Preface -- Contents -- 1 Introduction -- 1.1 From ODEs to PDEs -- 1.2 Time-independent Problems -- 1.3 Evolutionary Equations -- 1.4 Particular Examples and the Change of Perspective -- 1.5 A Brief Outline of the Course -- 1.6 Comments -- Exercises -- References -- 2 Unbounded Operators -- 2.1 Operators in Banach Spaces -- 2.2 Operators in Hilbert Spaces -- 2.3 Computing the Adjoint -- 2.4 The Spectrum and Resolvent Set -- 2.5 Comments -- Exercises -- References -- 3 The Time Derivative -- 3.1 Bochner-Lebesgue Spaces -- 3.2 The Time Derivative as a Normal Operator -- 3.3 Comments -- Exercises -- References -- 4 Ordinary Differential Equations -- 4.1 The Domain of the time derivative and the Sobolev Embedding Theorem -- 4.2 The Picard-Lindel�of Theorem -- 4.3 Delay Differential Equations -- 4.4 Comments -- Exercises -- References -- 5 The Fourier-Laplace Transformation and Material Law Operators -- 5.1 The Fourier Transformation -- 5.2 The Fourier-Laplace Transformation and Its Relation to the Time Derivative -- 5.3 Material Law Operators -- 5.4 Comments -- Exercises -- References -- 6 Solution Theory for Evolutionary Equations -- 6.1 First Order Sobolev Spaces -- 6.2 Well-Posedness of Evolutionary Equations and Applications -- 6.3 Proof of Picard's Theorem -- 6.4 Comments -- Exercises -- References -- 7 Examples of Evolutionary Equations -- 7.1 Poro-Elastic Deformations -- 7.2 Fractional Elasticity -- 7.3 The Heat Equation with Delay -- 7.4 Dual Phase Lag Heat Conduction -- 7.5 Comments -- Exercises -- References -- 8 Causality and a Theorem of Paley and Wiener -- 8.1 A Theorem of Paley and Wiener -- 8.2 A Representation Result -- 8.3 Comments -- Exercises -- References -- 9 Initial Value Problems and Extrapolation Spaces -- 9.1 What are Initial Values? -- 9.2 Extrapolating Operators -- 9.3 Evolutionary Equations in Distribution Spaces. | |
505 | 8 | _a9.4 Initial Value Problems for Evolutionary Equations -- 9.5 Comments -- Exercises -- References -- 10 Differential Algebraic Equations -- 10.1 The Finite-Dimensional Case -- 10.2 The Infinite-Dimensional Case -- 10.3 Comments -- Exercises -- References -- 11 Exponential Stability of Evolutionary Equations -- 11.1 The Notion of Exponential Stability -- 11.2 A Criterion for Exponential Stability of Parabolic-Type Equations -- 11.3 Three Exponentially Stable Models for Heat Conduction -- 11.4 Exponential Stability for Hyperbolic-Type Equations -- 11.5 A Criterion for Exponential Stability of Hyperbolic-Type Equations -- 11.6 Examples of Exponentially Stable Hyperbolic Problems -- 11.7 Comments -- Exercises -- References -- 12 Boundary Value Problems and Boundary Value Spaces -- 12.1 The Boundary Values of Functions in the Domain of the Gradient -- 12.2 The Boundary Values of Functions in the Domain of the Divergence -- 12.3 Inhomogeneous Boundary Value Problems -- 12.4 Abstract Boundary Data Spaces -- 12.5 Robin Boundary Conditions -- 12.6 Comments -- Exercises -- References -- 13 Continuous Dependence on the Coefficients I -- 13.1 Convergence of Material Laws -- 13.2 A Leading Example -- 13.3 Convergence in the Weak Operator Topology -- 13.4 Comments -- Exercises -- References -- 14 Continuous Dependence on the Coefficients II -- 14.1 A Convergence Theorem -- 14.2 The Theorem of Rellich and Kondrachov -- 14.3 The Periodic Gradient -- 14.4 The Limit of the Scaled Coefficient Sequence -- 14.5 Comments -- Exercises -- References -- 15 Maximal Regularity -- 15.1 Guiding Examples and Non-Examples -- 15.2 The Maximal Regularity Theorem and Fractional Sobolev Spaces -- 15.3 The Proof of Theorem 15.2.3 -- 15.4 Comments -- Exercises -- References -- 16 Non-Autonomous Evolutionary Equations -- 16.1 Examples -- 16.2 Non-Autonomous Picard's Theorem-The ODE Case. | |
505 | 8 | _a16.3 Non-Autonomous Picard's Theorem-The PDE Case -- 16.4 Comments -- Exercises -- References -- 17 Evolutionary Inclusions -- 17.1 Maximal Monotone Relations and the Theorem of Minty -- 17.2 The Yosida Approximation and Perturbation Results -- 17.3 A Solution Theory for Evolutionary Inclusions -- 17.4 Maxwell's Equations in Polarisable Media -- 17.5 Comments -- Exercises -- References -- A Derivations of Main Equations -- A.1 Heat Equation -- A.2 Maxwell's Equations -- A.3 Linear Elasticity -- A.4 Scalar Wave Equation -- A.5 Comments -- Exercises -- References -- Bibliography -- Index. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
655 | 4 | _aElectronic books. | |
700 | 1 | _aTrostorff, Sascha. | |
700 | 1 | _aWaurick, Marcus. | |
776 | 0 | 8 |
_iPrint version: _aSeifert, Christian _tEvolutionary Equations _dCham : Springer International Publishing AG,c2022 _z9783030893965 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aOperator Theory: Advances and Applications Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/bacm-ebooks/detail.action?docID=6882488 _zClick to View |
999 |
_c309084 _d309084 |