000 | 03665nam a22003973i 4500 | ||
---|---|---|---|
001 | EBC6790370 | ||
003 | MiAaPQ | ||
005 | 20240122001459.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 231124s2021 xx o ||||0 eng d | ||
020 |
_a9789179290382 _q(electronic bk.) |
||
035 | _a(MiAaPQ)EBC6790370 | ||
035 | _a(Au-PeEL)EBL6790370 | ||
035 | _a(OCoLC)1283844869 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
100 | 1 | _aCirillo, Marco Domenico. | |
245 | 1 | 2 |
_aA Path along Deep Learning for Medical Image Analysis : _bWith Focus on Burn Wounds and Brain Tumors. |
250 | _a1st ed. | ||
264 | 1 |
_aLink�oping : _bLinkopings Universitet, _c2021. |
|
264 | 4 | _c{copy}2021. | |
300 | _a1 online resource (101 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aLink�oping Studies in Science and Technology. Dissertations Series ; _vv.2175 |
|
505 | 0 | _aIntro -- Abstract -- Acknowledgments -- Contents -- List of Figures -- Introduction -- Aim -- Delimitations -- Research questions -- Included papers -- Research ethics -- Outline -- Burn Wounds and Brain Tumors -- Burn wounds -- Pathophysiology -- Assessment methods -- Brain tumors -- Pathophysiology -- Assessment methods -- Reflections -- Image Features -- Type of features -- Color features -- Edge feature -- Texture features -- Mixed features -- Principal component analysis -- Independent component analysis -- Tensor decomposition -- Deep features -- Convolution -- Deep features -- Reflections -- Convolutional Neural Networks -- Deep learning basics -- Loss functions -- Forward and backward propagation -- Data pre-processing -- Weight initialization -- Normalization layers -- Activation functions -- Optimization -- Regularization -- Residual block -- Convolutional neural networks -- Convolutional layers -- CNNs for image classification -- CNNs for image segmentation -- CNNs for image generation -- Reflections -- Image Augmentation -- Image Augmentation Techniques -- Patch extraction -- Flipping -- Rotation -- Scaling -- Elastic grid-based deformation -- Brightness -- Reflections -- Generative Adversarial Networks -- Generator and discriminator -- GANs in medical imaging -- GAN losses -- Image-to-image GANs -- Pix2Pix -- Semantic image synthesis with spatially-adaptive normalization -- Reflections -- Papers, Discussions and Conclusions -- Paper I: Tensor decomposition for colour image segmentation of burn wounds -- Paper II: Time-independent prediction of burn depth using deep convolutional neural networks -- Paper III: Improving burn depth assessment for pediatric scalds by AI based on semantic segmentation of polarized light photography images -- Paper IV: Vox2Vox: 3D-GAN for brain tumour segmentation. | |
505 | 8 | _aPaper V: What is the best data augmentation for 3D brain tumor segmentation? -- Conclusions -- Bibliography -- Papers. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aCirillo, Marco Domenico _tA Path along Deep Learning for Medical Image Analysis _dLink�oping : Linkopings Universitet,c2021 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aLink�oping Studies in Science and Technology. Dissertations Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/bacm-ebooks/detail.action?docID=6790370 _zClick to View |
999 |
_c308654 _d308654 |