000 | 11326nam a22005293i 4500 | ||
---|---|---|---|
001 | EBC5896881 | ||
003 | MiAaPQ | ||
005 | 20240122001152.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 231124s2019 xx o ||||0 eng d | ||
020 |
_a9783030112806 _q(electronic bk.) |
||
020 | _z9783030112790 | ||
035 | _a(MiAaPQ)EBC5896881 | ||
035 | _a(Au-PeEL)EBL5896881 | ||
035 | _a(OCoLC)1132422871 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aTS1-2301 | |
100 | 1 | _aVollertsen, Frank. | |
245 | 1 | 0 |
_aCold Micro Metal Forming : _bResearch Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany. |
250 | _a1st ed. | ||
264 | 1 |
_aCham : _bSpringer International Publishing AG, _c2019. |
|
264 | 4 | _c�2020. | |
300 | _a1 online resource (370 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 | _aLecture Notes in Production Engineering Series | |
505 | 0 | _aIntro -- Preface -- Contents -- Contributors -- 1 Introduction to Collaborative Research Center Micro Cold Forming (SFB 747) -- 1.1 Motivation -- 1.2 Aim of the SFB 747 -- 1.3 Structure and Partners -- 1.4 Main Results -- 1.4.1 Innovation Speed -- 1.4.1.1 Process Design -- 1.4.1.2 Design of Production Systems -- 1.4.2 Micro Mass Forming -- 1.4.2.1 Tribology -- 1.4.2.2 Scatter -- 1.4.3 Mastered Production -- 1.4.3.1 Measurement and Quality Control -- 1.4.3.2 Handling -- 1.4.3.3 Thermal Aspects -- References -- 2 Micro Forming Processes -- 2.1 Introduction to Micro Forming Processes -- 2.2 Generation of Functional Parts of a Component by Laser-Based Free Form Heading -- 2.2.1 Laser Rod End Melting -- 2.2.1.1 Thermal Upset Process -- 2.2.1.2 Process Stages and Radiation Strategy -- 2.2.1.3 Modeling and Simulation of the Master Process -- 2.2.1.4 Energy Impact and Heat Dissipation Mechanisms -- 2.2.1.5 Solidification and Microstructure -- 2.2.1.6 Reproducibility -- 2.2.1.7 Formability -- 2.2.1.8 Linked Part Production -- 2.2.2 Laser Rim Melting -- 2.3 Rotary Swaging of Micro Parts -- 2.3.1 Introduction -- 2.3.2 Process Limitations and Measures for Their Extension -- 2.3.3 Material Flow Control -- 2.3.3.1 High Productivity in Infeed Swaging -- 2.3.3.2 High Productivity in Plunge Rotary Swaging -- 2.3.3.3 Application of External Axial Forces in Plunge Rotary Swaging -- 2.3.4 Characterization of the Material Flow with FEM -- 2.3.5 Material Modifications -- 2.3.6 Applications and Remarks -- 2.4 Conditioning of Part Properties -- 2.4.1 Introduction -- 2.4.2 Process Chain "Rotary Swaging-Extrusion" -- 2.4.2.1 Modifications of the Die Geometry -- 2.4.2.2 Modifications of Process Kinematics -- 2.4.2.3 Extrusion -- 2.4.2.4 Experimental Design -- 2.4.3 Results and Discussion -- 2.5 Influence of Tool Geometry on Process Stability in Micro Metal Forming. | |
505 | 8 | _a2.5.1 Introduction -- 2.5.2 Experimental Setup -- 2.5.3 Numerical Models -- 2.5.4 Circular Deep Drawing -- 2.5.5 Deep Drawing of Rectangular Parts -- 2.5.6 Forming Limit -- 2.5.7 Change of Scatter -- References -- 3 Process Design -- 3.1 Introduction to Process Design Claus Thomy -- 3.2 Linked Parts for Micro Cold Forming Process Chains -- 3.2.1 Introduction -- 3.2.2 Design and Production Planning of Linked Parts -- 3.2.2.1 Design and Product Model of Linked Parts -- 3.2.2.2 Production Planning -- 3.2.2.3 Tolerance Field Widening -- 3.2.3 Automated Production of Linked Micro Parts -- 3.2.3.1 Handling Concept and Equipment -- 3.2.3.2 Effects Resulting from the Production as Linked Parts -- 3.2.3.3 Synchronization of Linked Parts -- 3.3 A Simultaneous Engineering Method for the Development of Process Chains in Micro Manufacturing -- 3.3.1 Introduction -- 3.3.2 Process Planning in Micro Manufacturing -- 3.3.3 Micro-Process Planning and Analysis (µ-ProPlAn) -- 3.3.3.1 Modeling View: Process Chains -- 3.3.3.2 Modeling View: Material Flow -- 3.3.3.3 Modeling View: Configuration (Cause-Effect Networks) -- 3.3.3.4 Basic Quantification of Cause-Effect Networks -- 3.3.3.5 Characterization of Local Variances -- 3.3.3.6 Simultaneous Engineering Procedure Model -- 3.3.3.7 Geometry-Oriented Modelling of Process Chains -- 3.3.3.8 Analysis and Model Optimization -- References -- 4 Tooling -- 4.1 Introduction to Tooling -- 4.2 Increase of Tool Life in Micro Deep Drawing -- 4.2.1 Introduction -- 4.2.2 Definitions -- 4.2.2.1 Tool Life -- 4.2.2.2 Dry Forming -- 4.2.3 Experimental Setups -- 4.2.3.1 Reciprocating Ball-on-Plate Test -- 4.2.3.2 Micro Deep Drawing -- 4.2.3.3 Combined Blanking and Deep Drawing -- 4.2.3.4 Lateral Micro Upsetting -- 4.2.4 Measurement Methods -- 4.2.4.1 Confocal Microscope -- 4.2.4.2 Negative Reproduction of Tool Geometry with Silicone. | |
505 | 8 | _a4.2.5 Materials -- 4.2.5.1 Workpieces -- 4.2.5.2 Tools -- 4.2.5.3 Coatings -- 4.2.6 Results -- 4.2.6.1 Characteristics of Tool Wear in Micro Deep Drawing -- 4.2.6.2 Wear Behavior of Combined Blanking and Deep Drawing Dies -- 4.2.6.3 SLM Tool in Combined Blanking and Deep Drawing -- 4.2.6.4 Dry Forming Processes -- 4.2.6.5 Wear Behavior in Lateral Micro Upsetting -- 4.3 Controlled and Scalable Laser Chemical Removal for the Manufacturing of Micro Forming Tools -- 4.3.1 Process Fundamentals -- 4.3.2 LCM Machines Concepts -- 4.3.3 Influence of the Process Parameters on the Material Removal -- 4.3.3.1 Influence of the Electrolyte -- 4.3.3.2 Influence of the Material -- 4.3.3.3 Influence of the Laser Parameters -- 4.3.4 Strategies Towards a Controllable Laser Chemical Machining -- 4.3.4.1 Modeling of Laser-Induced Temperature Fields -- 4.3.4.2 Quality Control System for Laser Chemical Machining -- 4.3.5 Tool Fabrication -- 4.3.5.1 Manufacturing of Stellite 21 Micro Forming Dies -- 4.3.5.2 Other Examples of Laser Chemically Machined Micro Tools -- 4.3.6 Comparison with Other Micro Machining Processes -- 4.4 Process Behavior in Laser Chemical Machining and Strategies for Industrial Use -- 4.4.1 Introduction -- 4.4.2 Materials and Methods -- 4.4.3 Sustainable Electrolytes for LCM -- 4.4.4 Strategies for Industrial Use of LCM -- 4.4.4.1 Automatic Workpiece Alignment for JLCM -- 4.4.4.2 In-Process Monitoring and Fast Workpiece Exchange for SLCM -- 4.4.4.3 Demand-Oriented Multi-channel Flow in SLCM -- 4.5 Flexible Manufacture of Tribologically Optimized Forming Tools -- 4.5.1 Introduction -- 4.5.2 Variation, Dispersion, and Tolerance in Inverse Problems -- 4.5.3 Computational Engineering -- 4.5.3.1 Process Model with Wear on Cutting Tool -- 4.5.3.2 Numerical Implementation -- 4.5.4 Tribologically Active Textured Surfaces. | |
505 | 8 | _a4.5.4.1 Micro-Milling to Generate Textured Surfaces -- 4.5.4.2 Micro-Tribological Investigation -- 4.5.4.3 Function Orientated Surface Characterization -- 4.5.4.4 Surface Micro-Contact Modeling -- 4.5.4.5 Inverse Modeling for Optimized Forming Die Manufacture -- 4.6 Predictive Compensation Measures for the Prevention of Shape Deviations of Micromilled Dental Products -- 4.6.1 Introduction -- 4.6.2 State of the Art and Aim -- 4.6.3 Applied Materials and Methods -- 4.6.4 Results -- 4.7 Thermo-Chemical-Mechanical Shaping of Diamond for Micro Forming Dies -- 4.7.1 Principles of Diamond Machining by Using Thermo-Chemical Effect -- 4.7.2 Ultrasonic Assisted Friction Polishing -- 4.7.2.1 Diamond Removal by Ultrasonic Assisted Friction Polishing Using Pure Metals -- 4.7.2.2 Experimental Results -- 4.7.3 Micro-Structuring of Single Crystal Diamond Using Ultrasonic Assisted Friction Polishing -- 4.7.3.1 Experimental Results -- 4.7.3.2 Setup for Micro-Structuring Single Crystal Diamond -- References -- 5 Quality Control and Characterization -- 5.1 Introduction to Quality Control and Characterization -- 5.2 Quality Inspection and Logistic Quality Assurance of Micro Technical Manufacturing Processes -- 5.2.1 Introduction -- 5.2.2 Optical 3D Surface Recording of Micro Parts Using DHM -- 5.2.2.1 Holographic Contouring -- 5.2.2.2 Digital Holographic Microscopy -- 5.2.3 Dimensional Inspection -- 5.2.3.1 State of the Art -- 5.2.3.2 Method -- 5.2.3.3 Verification and Measurement Results -- 5.2.4 Detection of Surface Defects -- 5.2.4.1 State of the Art -- 5.2.4.2 Methods -- 5.2.4.3 Validation -- 5.3 Inspection of Functional Surfaces on Micro Components in the Interior of Cavities -- 5.3.1 Introduction -- 5.3.1.1 Digital Holography -- 5.3.1.2 Two-Wavelength Contouring -- 5.3.1.3 Two-Frame Phase-Shifting -- 5.3.2 Experimental Alignment -- 5.3.2.1 Experimental Results. | |
505 | 8 | _a5.3.2.2 Comparison with X-Ray Tomography -- 5.3.2.3 Different Batches of Material -- 5.3.3 Automatic Defect Detection -- 5.3.3.1 Preprocessing -- 5.3.3.2 Part Detection -- 5.3.3.3 Prototype Creation and Phase Unwrapping -- 5.3.3.4 Defect Detection -- 5.3.3.5 Detecting Loss of Focus -- 5.3.3.6 Results -- 5.4 In Situ Geometry Measurement Using Confocal Fluorescence Microscopy -- 5.4.1 Challenges of Optical Metrology for In-Process and in situ Measurements -- 5.4.2 Principle of Confocal Microscopy Based Measurement -- 5.4.2.1 Model Assumptions -- 5.4.2.2 Model Description -- 5.4.3 Experimental Validation -- 5.4.4 Uncertainty Characterization -- 5.5 Characterization of Semi-finished Micro Products and Micro Components -- 5.5.1 Introduction -- 5.5.2 Equipment for Testing Micro Samples -- 5.5.2.1 Mechanical Testing -- 5.5.2.2 Metallographic Investigations -- 5.5.3 Tensile Tests on Micro Samples -- 5.5.4 Endurance Tests on Micro Samples -- 5.5.5 Microstructure Analysis with EBSD on Rotary Swaged Samples -- References -- 6 Materials for Micro Forming -- 6.1 Introduction to Materials for Micro Forming -- 6.2 Tailored Graded Tool Materials for Micro Cold Forming via Spray Forming -- 6.2.1 Introduction -- 6.2.2 Production of Graded Tool Materials -- 6.2.2.1 Materials Selection -- 6.2.2.2 Spray Forming of Graded Tool Materials -- 6.2.2.3 Densification of Graded Tool Materials -- 6.2.2.4 Heat Treatment -- 6.2.3 Evaluation of the Graded Tool Materials -- 6.2.3.1 Co-spray-Formed Material -- 6.2.3.2 Successive Spray-Formed Material -- 6.2.4 Fabrication of Micro Cold Forming Tools -- 6.2.5 Performance of Micro Forming Tools -- 6.3 Production of Thin Sheets by Physical Vapor Deposition -- 6.3.1 Introduction -- 6.3.2 Methods -- 6.3.2.1 The Magnetron Sputtering Process -- 6.3.2.2 Separation of the Foils from the Substrate. | |
505 | 8 | _a6.3.2.3 Continuous PVD Coating Process for Thin Substrate Foils. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
655 | 4 | _aElectronic books. | |
700 | 1 | _aFriedrich, Sybille. | |
700 | 1 | _aKuhfu�, Bernd. | |
700 | 1 | _aMaa�, Peter. | |
700 | 1 | _aThomy, Claus. | |
700 | 1 | _aZoch, Hans-Werner. | |
776 | 0 | 8 |
_iPrint version: _aVollertsen, Frank _tCold Micro Metal Forming _dCham : Springer International Publishing AG,c2019 _z9783030112790 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aLecture Notes in Production Engineering Series | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/bacm-ebooks/detail.action?docID=5896881 _zClick to View |
999 |
_c305335 _d305335 |