000 | 11005nam a22004813i 4500 | ||
---|---|---|---|
001 | EBC5592548 | ||
003 | MiAaPQ | ||
005 | 20240122001131.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 231124s2016 xx o ||||0 eng d | ||
020 |
_a9784431558941 _q(electronic bk.) |
||
020 | _z9784431558927 | ||
035 | _a(MiAaPQ)EBC5592548 | ||
035 | _a(Au-PeEL)EBL5592548 | ||
035 | _a(OCoLC)945973972 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aR895-920 | |
082 | 0 | _a616.07575 | |
100 | 1 | _aKuge, Yuji. | |
245 | 1 | 0 | _aPerspectives on Nuclear Medicine for Molecular Diagnosis and Integrated Therapy. |
250 | _a1st ed. | ||
264 | 1 |
_aTokyo : _bSpringer Japan, _c2016. |
|
264 | 4 | _c�2016. | |
300 | _a1 online resource (328 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aIntro -- Preface -- Contents -- Contributors -- Part I: Instrument and Data Analysis -- Chapter 1: Advances in 4D Gated Cardiac PET Imaging for Image Quality Improvement and Cardiac Motion and Contractility Estimat... -- 1.1 Introduction -- 1.2 Materials and Methods -- 1.2.1 Data-Driven Respiratory Motion Detection and Gating Method -- 1.2.2 4D PET Image Reconstruction Methods with Attenuation, and Respiratory and Cardiac Motion Compensation -- 1.2.2.1 4D PET Image Reconstruction with Respiratory Motion and Attenuation Compensation -- 1.2.2.2 4D Image Reconstruction with Cardiac Motion Compensation -- 1.2.2.3 4D Image Reconstruction with Dual Respiratory and Cardiac Motion Compensation -- 1.2.3 Evaluation of the 4D PET Image Reconstruction with Respiratory and Attenuation Compensation -- 1.2.3.1 Evaluation Using Realistic Simulated PET Study with Small Lung Lesions -- 1.2.3.2 Evaluation Using Data from Clinical Gated Cardiac PET Studies -- 1.2.4 Evaluation of the 4D PET Image Reconstruction Method with Dual Respiratory and Cardiac Motion Compensation -- 1.3 Results and Discussion -- 1.3.1 Improvement of Small Lung Lesion Detection with Respiratory and Attenuation Compensation -- 1.3.2 Improvement of Gated Cardiac PET Images with Respiratory Motion and Attenuation Compensation -- 1.3.3 Improvement of Gated Cardiac PET Images with Dual Respiratory and Cardiac Motion Compensation -- 1.4 Conclusions -- References -- Chapter 2: The Need for Quantitative SPECT in Clinical Brain Examinations -- 2.1 Introduction -- 2.2 Requirements for Quantitative Reconstructions in SPECT -- 2.2.1 Scatter Correction -- 2.2.2 Septal Penetration in the Collimator -- 2.2.3 Attenuation Correction -- 2.2.4 Attenuation Coefficient Map -- 2.2.5 Implementation of the Collimator Aperture Model -- 2.2.6 SPECT Reconstruction. | |
505 | 8 | _a2.2.6.1 OSEM on 2D Domains for the Pre-scatter Corrected Geometric Mean Projection -- 2.2.6.2 OSEM on 3D Domains for the Pre-scatter Corrected Geometric Mean Projection -- 2.2.6.3 OSEM on 3D Domains Including the Scatter Correction Process -- 2.2.7 Calibration to Bq/mL -- 2.2.8 Dead Time Count Loss -- 2.3 Phantom Experiments -- 2.3.1 Uniform Cylindrical Phantom -- 2.3.2 3D Brain Iida Phantom for CBF Quantitation -- 2.3.3 Striatum Phantom for Dopamine Transporter Imaging -- 2.3.4 QSPECT Program Packages -- 2.4 Adequacy and Impact in Clinical Scans -- 2.4.1 Dopamine Transporter Function (SBR Quantitation) Using 123I-FP-CIT -- 2.4.2 Central Benzodiazepine Receptor Imaging Using 123I-IMZ (Neuron Damage/Residual) -- 2.4.3 Rest- and Acetazolamide-CBF Using 123I-IMP (The Dual-Table Autoradiography Method) -- 2.5 Quality Control of the SPECT Scanner -- 2.6 Summary and Future Directions -- References -- Chapter 3: PET Imaging Innovation by DOI Detectors -- 3.1 Introduction -- 3.2 The OpenPET: A Future PET for Therapy Imaging -- 3.3 The Helmet-Chin PET for Super High-Sensitive Brain Imaging -- 3.4 The X�tal Cube: 0.8mm Isotropic Resolution, a World Record -- 3.5 The Add-On PET: A PET Insert to Upgrade Existing MRI to PET/MRI -- 3.6 Conclusions -- References -- Chapter 4: Semiconductor Detector-Based Scanners for Nuclear Medicine -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Development and Performance Evaluation of Prototype CdTe-PET -- 4.2.1.1 Outline of CdTe-PET and Its Parameter Settings -- 4.2.1.2 Image Reconstruction Method -- 4.2.1.3 Physical Performance Measurement -- 4.2.1.4 Image Quality Evaluation -- Hoffman Phantom -- Preclinical Evaluation with Rat Tumor Model -- Clinical Evaluation -- 4.2.2 Development and Performance Evaluation of Prototype CdTe-SPECT -- 4.2.2.1 Outline of CdTe-SPECT -- 4.2.2.2 Image Reconstruction Method. | |
505 | 8 | _a4.2.2.3 Performance Evaluation in Phantom Experiment and Clinical Study -- Dual-Radionuclide Character-Shape Phantom -- Simultaneous Dual-Radionuclide Human Brain Study -- 4.3 Results and Discussion -- 4.3.1 Performance Evaluation of CdTe-PET by Phantom Experiment and Clinical Study -- 4.3.1.1 Physical Performance of CdTe-PET -- 4.3.1.2 Image Quality of CdTe-PET -- Hoffman Phantom -- Preclinical Evaluation with Rat Tumor Model -- Clinical Evaluation -- 4.3.2 Performance Evaluation of CdTe-SPECT by Phantom Experiment and Clinical Study -- 4.3.2.1 Dual-Radionuclide Character-Shape Phantom -- 4.3.2.2 Simultaneous Dual-Radionuclide Human Brain Study -- 4.4 Conclusion -- References -- Chapter 5: Kinetic Analysis for Cardiac PET -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Study Subjects -- 5.2.2 Positron Emission Tomography/Computed Tomography 11C-HED PET/CT Imaging -- 5.2.3 RI Estimation -- 5.2.4 Compartment Model Analysis -- 5.2.5 Statistical Analysis -- 5.3 Results -- 5.3.1 Subjects� Background -- 5.3.2 HED PET Data Normal Volunteers and HF Patients -- 5.4 Discussion -- 5.4.1 Study Limitation -- 5.5 Conclusion -- References -- Part II: Biomarker and Molecular Probes -- Chapter 6: How Far Are We from Dose On Demand of Short-Lived Radiopharmaceuticals? -- 6.1 Introduction -- 6.2 DOD Features -- 6.3 Early Examples Conducible to DOD -- 6.4 DOD Proof-of-Principle Examples -- 6.4.1 Minicyclotron/Minichemistry/MiniQC -- 6.4.2 Continuous Flow Microfluidics -- 6.4.3 Peptide Labeling -- 6.4.4 Solid-Phase Approaches -- 6.4.5 Droplet Systems -- 6.5 Challenges and Future of DOD -- 6.6 Conclusions -- References -- Chapter 7: Advantages of Radiochemistry in Microliter Volumes -- 7.1 Introduction -- 7.1.1 Radiosynthesis of Positron Emission Tomography Tracers -- 7.1.2 Microfluidics for Radiosynthesis -- 7.1.3 Platforms for Microliter Volume Synthesis. | |
505 | 8 | _a7.2 Advantages of Radiosynthesis at the Microliter Scale -- 7.2.1 Miniaturization and Disposability -- 7.2.2 Reduced Radiolysis -- 7.2.3 Reagent Minimization -- 7.2.4 High Specific Activity -- 7.3 Practical Considerations -- 7.3.1 Limits of Volume Reduction -- 7.3.2 Radioisotope Concentration -- 7.3.3 Synthesis Automation -- 7.4 Conclusions and Outlook -- References -- Chapter 8: Development of a Microreactor for Synthesis of 18F-Labeled Positron Emission Tomography Probe -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Villermaux-Dushman Method -- 8.2.2 18F Labeling of BSA by 18F-SFB -- 8.2.3 18F Labeling of NITTP by 18F -- 8.2.4 Solvent Resistance Test -- 8.3 Results and Discussion -- 8.3.1 Microreactor with Novel Mixing System -- 8.3.2 Evaluation of Mixing Performance of Prototype Microreactors -- 8.3.3 18F Labeling of Bovine Serum Albumin (BSA) by N-succinimidyl-4-18F Fluorobenzoate (18F-SFB) -- 8.3.4 18F Labeling of 1-(2-nitro-1-imidazolyl)-2-O-tetrahydropyranyl-3-O-toluenesulfonylpropanediol (NITTP) by 18F -- 8.3.5 Screening of Material for the Split Mixing Microreactor -- 8.4 Conclusion -- References -- Chapter 9: Preclinical Evaluation of a Thymidine Phosphorylase Imaging Probe, [123I]IIMU, for Translational Research -- 9.1 Introduction -- 9.2 Radiosynthesis of [123I]IIMU [2] -- 9.3 In Vitro Study: Uptake of [125I]IIMU in Cultured A431 and AZ521 Cells [4] -- 9.4 In Vivo Study: Biodistribution of [125I]IIMU in A431 and AZ521 Tumor-Bearing Nude Mice [4] -- 9.5 SPECT/CT Imaging Study [2] -- 9.6 Safety Assessment -- 9.7 Conclusions -- References -- Chapter 10: Discovery and Evaluation of Biomarkers for Atherosclerosis -- 10.1 Introduction -- 10.2 Materials and Methods -- 10.3 Results and Discussion -- 10.3.1 Disease Stage-Dependent Differential Proteome in Human Plasma. | |
505 | 8 | _a10.3.2 Disease Stage-Dependent Differential Proteome in Atherosclerosis Mouse Model -- 10.3.3 Comparison Between Human and Mouse Plasma Proteome -- 10.3.4 Limitation -- 10.4 Conclusion -- References -- Chapter 11: Radioimmunodetection of Atherosclerotic Lesions Focusing on the Accumulation Mechanism of Immunoglobulin G -- 11.1 Introduction -- 11.2 Materials and Methods -- 11.2.1 Materials -- 11.2.2 Preparation of Radiolabeled IgG -- 11.2.3 Animal Study -- 11.2.3.1 Autoradiography (ARG) Study -- 11.2.4 Histochemical Study -- 11.3 Results -- 11.3.1 Probe Preparation -- 11.3.2 In Vivo Study -- 11.3.3 Discussion -- References -- Part III: Cardiology -- Chapter 12: Noninvasive PET Flow Reserve Imaging to Direct Optimal Therapies for Myocardial Ischemia -- 12.1 Introduction -- 12.2 Myocardial Blood Flow (Perfusion) Imaging -- 12.3 Fractional Flow Reserve Assessment -- 12.4 Noninvasive PET (MPR) vs. Invasive Coronary Angiography (FFR) -- 12.5 Conclusion -- References -- Chapter 13: The Clinical Value of Cardiac PET in Heart Failure -- 13.1 Perfusion -- 13.1.1 Coronary Artery Disease (CAD) and Microvascular Dysfunction -- 13.1.2 Transplant Vasculopathy -- 13.2 Sympathetic Innervation -- 13.3 Noninvasive Assessment of Myocardial Metabolism -- 13.3.1 Myocardial Viability -- 13.3.2 Cardiac Efficiency -- 13.3.3 Cardiac Resynchronization Therapy (CRT) -- 13.3.4 Chemotherapy-Related Heart Failure -- 13.3.5 Metabolic Therapy -- 13.4 Molecular Imaging Approaches of Cardiac Remodeling -- 13.4.1 Imaging of Matrix Metalloproteinases -- 13.4.2 Angiogenesis -- 13.4.3 Myocardial Inflammation -- 13.5 Conclusions -- References -- Chapter 14: Emerging Trends and Future Perspective of Novel Cardiac SPECT Technology -- 14.1 Introduction -- 14.2 Materials and Methods -- 14.3 Results and Discussion -- 14.3.1 Reduction in Injection Dose of Radiopharmaceuticals. | |
505 | 8 | _a14.3.2 Attempts to Estimate Coronary Flow Reserve Using CZT SPECT. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
655 | 4 | _aElectronic books. | |
700 | 1 | _aShiga, Tohru. | |
700 | 1 | _aTamaki, Nagara. | |
776 | 0 | 8 |
_iPrint version: _aKuge, Yuji _tPerspectives on Nuclear Medicine for Molecular Diagnosis and Integrated Therapy _dTokyo : Springer Japan,c2016 _z9784431558927 |
797 | 2 | _aProQuest (Firm) | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/bacm-ebooks/detail.action?docID=5592548 _zClick to View |
999 |
_c304972 _d304972 |