The Fiber-Optic Gyroscope, Third Edition.

By: Lefevre, Herve CMaterial type: TextTextPublisher: Norwood : Artech House, 2022Copyright date: �2022Edition: 3rd edDescription: 1 online resource (509 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781630818630Subject(s): Optical gyroscopesGenre/Form: Electronic books.Additional physical formats: Print version:: The Fiber-Optic Gyroscope, Third EditionDDC classification: 681.753 LOC classification: TL589.2.O6Online resources: Click to View
Contents:
The Fiber-Optic Gyroscope, Third Edition -- Contents -- Foreword -- Preface to the First Edition -- Preface to the Second Edition -- Preface to the Third Edition -- Chapter 1 Introduction -- References -- Chapter 2 Principle of the Fiber-Optic Gyroscope -- 2.1 Sagnac-Laue Effect -- 2.1.1 A History of Optics from Aether to Relativity -- 2.1.2 Sagnac-Laue Effect in a Vacuum -- 2.1.3 Sagnac-Laue Effect in a Medium -- 2.2 Active and Passive Ring Resonators -- 2.2.1 Ring-Laser Gyroscope -- 2.2.2 Resonant Fiber-Optic Gyroscope -- 2.3 Passive Fiber-Ring Interferometer -- 2.3.1 Principle of the Interferometric Fiber-Optic Gyroscope -- 2.3.2 Theoretical Sensitivity of the I-FOG -- 2.3.3 Noise, Drift, and Scale Factor -- 2.3.4 ARW Versus Root PSD -- 2.3.5 Evaluation of Noise and Drift by Allan Variance (or Allan Deviation) -- 2.3.6 Allan Variance/Deviation Versus Standard Variance/Deviation -- 2.3.7 Bandwidth -- 2.3.8 Various Functions of a Gyro: Attitude Measurement, Gyro Compassing,and Inertial Navigation -- References -- Chapter 3 Reciprocity of a Fiber Ring Interferometer -- 3.1 Principle of Reciprocity -- 3.1.1 Single-Mode Reciprocity of Wave Propagation -- 3.1.2 Reciprocal Behavior of a Beam Splitter -- 3.2 Minimum Configuration of a Ring Fiber Interfero -- 3.2.1 Reciprocal Configuration -- 3.2.2 Reciprocal Biasing Modulation-Demodulation -- 3.2.3 Proper (or Eigen) Frequency -- 3.3 Reciprocity with All-Guided Schemes -- 3.3.1 Evanescent-Field Coupler (or X-Coupler or Four-Port Coupler) -- 3.3.2 Y-Junction -- 3.3.3 All-Fiber Approach -- 3.3.4 Hybrid Architectures with Integrated Optics:Y-Coupler Configuration -- 3.4 Problem of Polarization Reciprocity -- 3.4.1 Rejection Requirement with Ordinary Single-Mode Fiber -- 3.4.2 Use of Polarization-Maintaining (PM) Fiber -- 3.4.3 Use of Depolarizer -- 3.4.4 Use of an Unpolarized Source -- References.
Chapter 4 Backreflection and Backscattering -- 4.1 Problem of Backreflection -- 4.1.1 Reduction of Backreflection with Slant Interfaces -- 4.1.2 Influence of Source Coherence -- 4.2 Problem of Backscattering -- 4.2.1 Coherent Backscattering -- 4.2.2 Use of a Broadband Source -- 4.2.3 Evaluation of the Residual Rayleigh Backscattering Noise -- References -- Chapter 5 Analysis of PolarizationNonreciprocities with BroadbandSource and High-BirefringencePolarization-Maintaining Fiber -- 5.1 Depolarization Effect in High-BirefringencePolarization-Maintaining Fibers -- 5.2 Analysis of Polarization Nonreciprocities in a Fiber GyroscopeUsing an All-Polarization-Maintaining Waveguide Configuration -- 5.2.1 Intensity-Type Effects -- 5.2.2 Comment About Length of Depolarization Ld Versus Length ofPolarization Correlation Lpc -- 5.2.3 Amplitude-Type Effects -- 5.3 Use of a Depolarizer -- 5.4 Testing with Optical Coherence Domain Polarimetry (OCDP), orToday, Distributed Polarization Crosstalk Analysis (DPXA) -- 5.4.1 OCDP, or DPXA, Based on Path-Matched White-Light Interferometry -- 5.4.2 OCDP/DPXA Using Optical Spectrum Analysis -- References -- Chapter 6 Time-Transience Related Nonreciprocal Effects -- 6.1 Effect of Temperature Transience: The Shupe Effect -- 6.2 Symmetrical Windings -- 6.3 Strain-Induced T-Dot Effect -- 6.4 Basics of Heat Diffusion and Temporal Signature of the Shupe and T-Dot Effects -- 6.5 Case of a Sinusoidal Temperature Variation -- 6.6 Simple Model of Thermally-Induced Differential Strainsin a Self-Standing Coil -- 6.6.1 Reminders About the Theory of Elasticity -- 6.6.2 Effect of the Fiber Coating -- 6.6.3 Simple Model of a Free-Standing Coil -- 6.7 Simple Viewing of Symmetrical Windings with the Thermally-Induced Differential Strains -- 6.8 Orthocyclic Winding for Hexagonal Close Packing -- 6.9 Effect of Acoustic Noise and Vibration.
References -- Chapter 7 Truly Nonreciprocal Effects -- 7.1 Magneto-Optic Faraday Effect -- 7.2 Axial Magneto-Optic Effect -- 7.3 Nonlinear Kerr Effect -- References -- Chapter 8 Scale Factor Linearity and Accuracy -- 8.1 Problem of Scale Factor Linearity and Accuracy -- 8.2 Closed-Loop Operation Methods to Linearize Scale Factor -- 8.2.1 Use of a Frequency Shift -- 8.2.2 Use of an Analog Phase Ramp (or Serrodyne Modulation) -- 8.2.3 Use of a Digital Phase Ramp -- 8.2.4 All-Digital Closed-Loop Processing Method -- 8.2.5 Control of the Gain of the Modulation Chain with "Four-State"Modulation -- 8.2.6 Potential Spurious Lock-In (or Deadband) Effect -- 8.3 Scale Factor Accuracy -- 8.3.1 Problem of Scale Factor Accuracy -- 8.3.2 Wavelength Dependence of an Interferometer Response with a Broadband Source -- 8.3.3 Effect of Phase Modulation -- 8.3.4 Wavelength Control Schemes -- 8.3.5 Mean Wavelength Change with a Parasitic Interferometeror Polarimeter -- References -- Chapter 9 Recapitulation of the Optimal Operating Conditions and Technologies of the I-FOG -- 9.1 Optimal Operating Conditions -- 9.2 Broadband Source -- 9.2.1 Superluminescent Diode -- 9.2.2 Rare-Earth Doped Fiber ASE Sources -- 9.2.3 Excess RIN Compensation Techniques -- 9.3 Sensing Coil -- 9.4 "Heart" of the Interferometer -- 9.5 Detector and Processing Electronics -- 9.6 Summary of the Various Noises -- 9.7 Thermal Phase Noise (Optical Nyquist Noise) -- References -- Chapter 10 Alternative Approaches for the I-FOG -- 10.1 Alternative Optical Configurations -- 10.1.1 Use of a [3 × 3] Coupler -- 10.1.2 Use of a Quarter-Wave Plate -- 10.1.3 Use of a Laser Diode -- 10.2 Alternative Signal Processing Schemes -- 10.2.1 Open-Loop Scheme with Use of Multiple Harmonics -- 10.2.2 Second Harmonic Feedback -- 10.2.3 Gated Phase Modulation Feedback -- 10.2.4 Heterodyne and Pseudo-Heterodyne Schemes.
10.2.5 Beat Detection with Phase Ramp Feedback -- 10.2.6 Dual Phase Ramp Feedback -- 10.3 Extended Dynamic Range with Multiple Wavelength Source -- References -- Chapter 11 Resonant Fiber-Optic Gyroscope -- 11.1 Principle of Operation of an All-Fiber Ring Cavity -- 11.2 Signal Processing Method -- 11.3 Reciprocity of a Ring Fiber Cavity -- 11.3.1 Introduction -- 11.3.2 Basic Reciprocity Within the Ring Resonator -- 11.3.3 Excitation and Detection of Resonances in a Ring Resonator -- 11.4 Other Parasitic Effects in the R-FOG -- Acknowledgment -- References -- Chapter 12 Conclusions -- 12.1 The State of Development and Expectations in 1993 -- 12.2 The State of the Art, Two Decades Later, in 2014, for the Second Edition -- 12.2.1 FOG Versus RLG -- 12.2.2 FOG Manufacturers, in 2014 -- 12.3 The State of the Art, Today, in 2021 -- 12.4 Trends for the Future and Concluding Remarks -- References -- Appendix A Fundamentals of Opticsfor the Fiber Gyroscope -- A.1 Basic Parameters of an Optical Wave: Wavelength,Frequency, and Power -- A.2 Spontaneous Emission, Stimulated Emission, and Related Noises -- A.2.1 Fundamental Photon Noise -- A.2.2 Spontaneous Emission and Excess Relative Intensity Noise -- A.2.3 Resonant Stimulated Emission in a Laser Source -- A.2.4 Amplified Spontaneous Emission -- A.3 Propagation Equation in a Vacuum -- A.4 State of Polarization of an Optical Wave -- A.5 Propagation in a Dielectric Medium -- A.5.1 Index of Refraction -- A.5.2 Chromatic Dispersion, Group Velocity, and Group Velocity Dispersion -- A.5.3 E and B, or E and H? -- A.6 Dielectric Interface -- A.6.1 Refraction, Partial Reflection, and Total Internal Reflection -- A.6.2 Dielectric Planar Waveguidance -- A.7 Geometrical Optics -- A.7.1 Rays and Phase Front -- A.7.2 Plane Mirror and Beam Splitte -- A.7.3 Lenses -- A.8 Interferences.
A.8.1 Principle of Two-Wave Interferometry -- A.8.2 Most Common Two-Wave Interferometers:Michelson and Mach-Zehnder Interferometers, Young Double-Slit -- A.8.3 Channeled Spectral Response of a Two-Wave Interferometer -- A.9 Multiple-Wave Interferences -- A.9.1 Fabry-Perot Interferometer -- A.9.2 Ring Resonant Cavi -- A.9.3 Multilayer Dielectric Mirror and Bragg Reflector -- A.9.4 Bulk-Optic Diffraction Grating -- A.10 Diffraction -- A.10.1 Fresnel Diffraction and Fraunhofer Diffraction -- A.10.2 Knife-Edge Fresnel Diffraction -- A.11 Gaussian Beam -- A.12 Coherence -- A.12.1 Basics of Coherence -- A.12.2 Mathematical Derivation of Temporal Coherence -- A.12.3 Concept of Wave Train -- A.12.4 Case of an Asymmetrical Spectrum -- A.12.5 Case of Propagation in a Dispersive Medium -- A.13 Birefringence -- A.13.1 Birefringence Index Difference -- A.13.2 Change of Polarization with Birefringence -- A.13.3 Interference with Birefringence -- A.14 Optical Spectrum Analysis -- Bibliography -- Appendix B Fundamentals of Fiber-Optics for the Fiber-Gyroscope -- B.1 Main Characteristics of a Single-Mode Optical Fiber -- B.1.1 Attenuation of a Silica Fiber -- B.1.2 Gaussian Profile of the Fundamental Mode -- B.1.3 Beat Length and h Parameter of a PM Fiber -- B.1.4 Protective Coating -- B.1.5 Temperature Dependence of Propagation in a PM Fiber -- B.2 Discrete Modal Guidance in a Step-Index Fiber -- B.3 Guidance in a Single-Mode Fiber -- B.3.1 Amplitude Distribution of the Fundamental LP01 Mode -- B.3.2 Effective Index neff and Phase Velocity vϕ of the Fundamental LP01 Mode -- B.3.3 Group Index ng of the Fundamental LP01 Mode -- B.3.4 Case of a Parabolic Index Profile -- B.3.5 Modes of a Few-Mode Fiber -- B.4 Coupling in a Single-Mode Fiber and Its Loss Mechanisms -- B.4.1 Free-Space Coupling -- B.4.2 Misalignment Coupling Losses.
B.4.3 Mode-Diameter Mismatch Loss of LP01 Mode.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

The Fiber-Optic Gyroscope, Third Edition -- Contents -- Foreword -- Preface to the First Edition -- Preface to the Second Edition -- Preface to the Third Edition -- Chapter 1 Introduction -- References -- Chapter 2 Principle of the Fiber-Optic Gyroscope -- 2.1 Sagnac-Laue Effect -- 2.1.1 A History of Optics from Aether to Relativity -- 2.1.2 Sagnac-Laue Effect in a Vacuum -- 2.1.3 Sagnac-Laue Effect in a Medium -- 2.2 Active and Passive Ring Resonators -- 2.2.1 Ring-Laser Gyroscope -- 2.2.2 Resonant Fiber-Optic Gyroscope -- 2.3 Passive Fiber-Ring Interferometer -- 2.3.1 Principle of the Interferometric Fiber-Optic Gyroscope -- 2.3.2 Theoretical Sensitivity of the I-FOG -- 2.3.3 Noise, Drift, and Scale Factor -- 2.3.4 ARW Versus Root PSD -- 2.3.5 Evaluation of Noise and Drift by Allan Variance (or Allan Deviation) -- 2.3.6 Allan Variance/Deviation Versus Standard Variance/Deviation -- 2.3.7 Bandwidth -- 2.3.8 Various Functions of a Gyro: Attitude Measurement, Gyro Compassing,and Inertial Navigation -- References -- Chapter 3 Reciprocity of a Fiber Ring Interferometer -- 3.1 Principle of Reciprocity -- 3.1.1 Single-Mode Reciprocity of Wave Propagation -- 3.1.2 Reciprocal Behavior of a Beam Splitter -- 3.2 Minimum Configuration of a Ring Fiber Interfero -- 3.2.1 Reciprocal Configuration -- 3.2.2 Reciprocal Biasing Modulation-Demodulation -- 3.2.3 Proper (or Eigen) Frequency -- 3.3 Reciprocity with All-Guided Schemes -- 3.3.1 Evanescent-Field Coupler (or X-Coupler or Four-Port Coupler) -- 3.3.2 Y-Junction -- 3.3.3 All-Fiber Approach -- 3.3.4 Hybrid Architectures with Integrated Optics:Y-Coupler Configuration -- 3.4 Problem of Polarization Reciprocity -- 3.4.1 Rejection Requirement with Ordinary Single-Mode Fiber -- 3.4.2 Use of Polarization-Maintaining (PM) Fiber -- 3.4.3 Use of Depolarizer -- 3.4.4 Use of an Unpolarized Source -- References.

Chapter 4 Backreflection and Backscattering -- 4.1 Problem of Backreflection -- 4.1.1 Reduction of Backreflection with Slant Interfaces -- 4.1.2 Influence of Source Coherence -- 4.2 Problem of Backscattering -- 4.2.1 Coherent Backscattering -- 4.2.2 Use of a Broadband Source -- 4.2.3 Evaluation of the Residual Rayleigh Backscattering Noise -- References -- Chapter 5 Analysis of PolarizationNonreciprocities with BroadbandSource and High-BirefringencePolarization-Maintaining Fiber -- 5.1 Depolarization Effect in High-BirefringencePolarization-Maintaining Fibers -- 5.2 Analysis of Polarization Nonreciprocities in a Fiber GyroscopeUsing an All-Polarization-Maintaining Waveguide Configuration -- 5.2.1 Intensity-Type Effects -- 5.2.2 Comment About Length of Depolarization Ld Versus Length ofPolarization Correlation Lpc -- 5.2.3 Amplitude-Type Effects -- 5.3 Use of a Depolarizer -- 5.4 Testing with Optical Coherence Domain Polarimetry (OCDP), orToday, Distributed Polarization Crosstalk Analysis (DPXA) -- 5.4.1 OCDP, or DPXA, Based on Path-Matched White-Light Interferometry -- 5.4.2 OCDP/DPXA Using Optical Spectrum Analysis -- References -- Chapter 6 Time-Transience Related Nonreciprocal Effects -- 6.1 Effect of Temperature Transience: The Shupe Effect -- 6.2 Symmetrical Windings -- 6.3 Strain-Induced T-Dot Effect -- 6.4 Basics of Heat Diffusion and Temporal Signature of the Shupe and T-Dot Effects -- 6.5 Case of a Sinusoidal Temperature Variation -- 6.6 Simple Model of Thermally-Induced Differential Strainsin a Self-Standing Coil -- 6.6.1 Reminders About the Theory of Elasticity -- 6.6.2 Effect of the Fiber Coating -- 6.6.3 Simple Model of a Free-Standing Coil -- 6.7 Simple Viewing of Symmetrical Windings with the Thermally-Induced Differential Strains -- 6.8 Orthocyclic Winding for Hexagonal Close Packing -- 6.9 Effect of Acoustic Noise and Vibration.

References -- Chapter 7 Truly Nonreciprocal Effects -- 7.1 Magneto-Optic Faraday Effect -- 7.2 Axial Magneto-Optic Effect -- 7.3 Nonlinear Kerr Effect -- References -- Chapter 8 Scale Factor Linearity and Accuracy -- 8.1 Problem of Scale Factor Linearity and Accuracy -- 8.2 Closed-Loop Operation Methods to Linearize Scale Factor -- 8.2.1 Use of a Frequency Shift -- 8.2.2 Use of an Analog Phase Ramp (or Serrodyne Modulation) -- 8.2.3 Use of a Digital Phase Ramp -- 8.2.4 All-Digital Closed-Loop Processing Method -- 8.2.5 Control of the Gain of the Modulation Chain with "Four-State"Modulation -- 8.2.6 Potential Spurious Lock-In (or Deadband) Effect -- 8.3 Scale Factor Accuracy -- 8.3.1 Problem of Scale Factor Accuracy -- 8.3.2 Wavelength Dependence of an Interferometer Response with a Broadband Source -- 8.3.3 Effect of Phase Modulation -- 8.3.4 Wavelength Control Schemes -- 8.3.5 Mean Wavelength Change with a Parasitic Interferometeror Polarimeter -- References -- Chapter 9 Recapitulation of the Optimal Operating Conditions and Technologies of the I-FOG -- 9.1 Optimal Operating Conditions -- 9.2 Broadband Source -- 9.2.1 Superluminescent Diode -- 9.2.2 Rare-Earth Doped Fiber ASE Sources -- 9.2.3 Excess RIN Compensation Techniques -- 9.3 Sensing Coil -- 9.4 "Heart" of the Interferometer -- 9.5 Detector and Processing Electronics -- 9.6 Summary of the Various Noises -- 9.7 Thermal Phase Noise (Optical Nyquist Noise) -- References -- Chapter 10 Alternative Approaches for the I-FOG -- 10.1 Alternative Optical Configurations -- 10.1.1 Use of a [3 × 3] Coupler -- 10.1.2 Use of a Quarter-Wave Plate -- 10.1.3 Use of a Laser Diode -- 10.2 Alternative Signal Processing Schemes -- 10.2.1 Open-Loop Scheme with Use of Multiple Harmonics -- 10.2.2 Second Harmonic Feedback -- 10.2.3 Gated Phase Modulation Feedback -- 10.2.4 Heterodyne and Pseudo-Heterodyne Schemes.

10.2.5 Beat Detection with Phase Ramp Feedback -- 10.2.6 Dual Phase Ramp Feedback -- 10.3 Extended Dynamic Range with Multiple Wavelength Source -- References -- Chapter 11 Resonant Fiber-Optic Gyroscope -- 11.1 Principle of Operation of an All-Fiber Ring Cavity -- 11.2 Signal Processing Method -- 11.3 Reciprocity of a Ring Fiber Cavity -- 11.3.1 Introduction -- 11.3.2 Basic Reciprocity Within the Ring Resonator -- 11.3.3 Excitation and Detection of Resonances in a Ring Resonator -- 11.4 Other Parasitic Effects in the R-FOG -- Acknowledgment -- References -- Chapter 12 Conclusions -- 12.1 The State of Development and Expectations in 1993 -- 12.2 The State of the Art, Two Decades Later, in 2014, for the Second Edition -- 12.2.1 FOG Versus RLG -- 12.2.2 FOG Manufacturers, in 2014 -- 12.3 The State of the Art, Today, in 2021 -- 12.4 Trends for the Future and Concluding Remarks -- References -- Appendix A Fundamentals of Opticsfor the Fiber Gyroscope -- A.1 Basic Parameters of an Optical Wave: Wavelength,Frequency, and Power -- A.2 Spontaneous Emission, Stimulated Emission, and Related Noises -- A.2.1 Fundamental Photon Noise -- A.2.2 Spontaneous Emission and Excess Relative Intensity Noise -- A.2.3 Resonant Stimulated Emission in a Laser Source -- A.2.4 Amplified Spontaneous Emission -- A.3 Propagation Equation in a Vacuum -- A.4 State of Polarization of an Optical Wave -- A.5 Propagation in a Dielectric Medium -- A.5.1 Index of Refraction -- A.5.2 Chromatic Dispersion, Group Velocity, and Group Velocity Dispersion -- A.5.3 E and B, or E and H? -- A.6 Dielectric Interface -- A.6.1 Refraction, Partial Reflection, and Total Internal Reflection -- A.6.2 Dielectric Planar Waveguidance -- A.7 Geometrical Optics -- A.7.1 Rays and Phase Front -- A.7.2 Plane Mirror and Beam Splitte -- A.7.3 Lenses -- A.8 Interferences.

A.8.1 Principle of Two-Wave Interferometry -- A.8.2 Most Common Two-Wave Interferometers:Michelson and Mach-Zehnder Interferometers, Young Double-Slit -- A.8.3 Channeled Spectral Response of a Two-Wave Interferometer -- A.9 Multiple-Wave Interferences -- A.9.1 Fabry-Perot Interferometer -- A.9.2 Ring Resonant Cavi -- A.9.3 Multilayer Dielectric Mirror and Bragg Reflector -- A.9.4 Bulk-Optic Diffraction Grating -- A.10 Diffraction -- A.10.1 Fresnel Diffraction and Fraunhofer Diffraction -- A.10.2 Knife-Edge Fresnel Diffraction -- A.11 Gaussian Beam -- A.12 Coherence -- A.12.1 Basics of Coherence -- A.12.2 Mathematical Derivation of Temporal Coherence -- A.12.3 Concept of Wave Train -- A.12.4 Case of an Asymmetrical Spectrum -- A.12.5 Case of Propagation in a Dispersive Medium -- A.13 Birefringence -- A.13.1 Birefringence Index Difference -- A.13.2 Change of Polarization with Birefringence -- A.13.3 Interference with Birefringence -- A.14 Optical Spectrum Analysis -- Bibliography -- Appendix B Fundamentals of Fiber-Optics for the Fiber-Gyroscope -- B.1 Main Characteristics of a Single-Mode Optical Fiber -- B.1.1 Attenuation of a Silica Fiber -- B.1.2 Gaussian Profile of the Fundamental Mode -- B.1.3 Beat Length and h Parameter of a PM Fiber -- B.1.4 Protective Coating -- B.1.5 Temperature Dependence of Propagation in a PM Fiber -- B.2 Discrete Modal Guidance in a Step-Index Fiber -- B.3 Guidance in a Single-Mode Fiber -- B.3.1 Amplitude Distribution of the Fundamental LP01 Mode -- B.3.2 Effective Index neff and Phase Velocity vϕ of the Fundamental LP01 Mode -- B.3.3 Group Index ng of the Fundamental LP01 Mode -- B.3.4 Case of a Parabolic Index Profile -- B.3.5 Modes of a Few-Mode Fiber -- B.4 Coupling in a Single-Mode Fiber and Its Loss Mechanisms -- B.4.1 Free-Space Coupling -- B.4.2 Misalignment Coupling Losses.

B.4.3 Mode-Diameter Mismatch Loss of LP01 Mode.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.