Water-Filtered Infrared a (wIRA) Irradiation : From Research to Clinical Settings.
Material type: TextPublisher: Cham : Springer International Publishing AG, 2022Copyright date: �2022Edition: 1st edDescription: 1 online resource (294 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9783030928803Genre/Form: Electronic books.Additional physical formats: Print version:: Water-Filtered Infrared a (wIRA) IrradiationLOC classification: RC254-282Online resources: Click to ViewIntro -- Foreword -- Acknowledgments -- Contents -- Editor and Contributors -- About the Editor -- Contributors -- Part I: Principles -- 1: Glossary Used in wIRA-Hyperthermia -- 1.1 Introduction -- 1.2 Recommended Terms -- 1.3 Occasionally Used, Obsolete, and Non-Recommended Terms -- 1.4 Empirical and Basic Data for wIRA Skin Exposures in Radiation Oncology and in Physical Therapy [8, 10-13] -- 1.4.1 Main Characteristics -- 1.4.2 Heating-up Times Necessary to Reach Thermal Steady-State Temperatures During wIRA-Hyperthermia in Normal Tissues [13] -- 1.4.3 Mean Steady-State Temperatures During wIRA-Hyperthermia in Normal Tissues and Human Cancers [11-13] -- References -- 2: From Sun to Therapeutic wIRA -- 2.1 Introduction -- 2.2 Generation of the Electromagnetic Radiation in the Sun -- 2.2.1 The Extra-Terrestrial Solar Spectrum -- 2.2.2 The Terrestrial Solar Spectrum -- 2.3 The Generation of Absorption Lines and Bands (Water Bands) in the Terrestrial Spectrum, Interaction Between Water Molecules, and Electromagnetic Radiation (Photons) -- 2.3.1 Structure of the Water Molecule and Hydrogen Bonding -- 2.3.2 Vibrations of the Water Molecule -- 2.3.2.1 Fundamental Vibrations -- 2.3.2.2 Combination Vibrations -- 2.3.2.3 Rotations -- 2.4 Generating Therapeutic wIRA -- 2.5 Comparison Between Therapeutic wIRA and the Terrestrial Solar Spectrum -- 2.6 The wIRA Radiator -- 2.6.1 Characteristics of Therapeutically Applied wIRA Irradiation -- 2.6.1.1 Setting the Desired Irradiance -- 2.6.1.2 Homogeneity of wIRA -- 2.6.1.3 Combination of Two wIRA Radiators -- 2.7 Conclusions -- References -- 3: Physical and Photobiological Basics of wIRA-Hyperthermia -- 3.1 Introduction -- 3.2 wIRA: Infrared Radiation That Fits into the Optical Window of Tissues -- 3.3 Optical Effects of Interaction Between wIRA and Tissues.
3.3.1 Spectral Transmittance and Remittance of wIRA (In vivo Data) -- 3.3.2 Penetration of wIRA into Tissues -- 3.4 Thermal Field Formation in Superficial Tissues During wIRA-Hyperthermia -- 3.4.1 Individual Responses to wIRA-Skin Exposures -- 3.4.2 Effects of Irradiance, Exposure Time, and Thermoregulation Upon Heating -- 3.4.3 Effective Tissue Heating by Direct wIRA Absorption and Heat Conduction -- 3.4.4 Vertical Temperature Profiles After Achieving Thermal Steady States -- 3.4.5 Choice of Irradiance for Adequate wIRA-Hyperthermia in Oncology -- 3.4.6 Post-Heating Temperature Decay Times to Ensure Effective Hyperthermia Levels During Subsequent Radiotherapy -- 3.5 Conclusions -- References -- 4: Thermography and Thermometry in wIRA-Hyperthermia -- 4.1 Introduction -- 4.2 Physical Background of Contact-Free Temperature Measurements -- 4.2.1 Basic Laws and Parameters -- 4.2.2 Derivation of the Basic Equation for Temperature Measurement -- 4.2.3 Determining the Emissivity of Human Skin -- 4.2.3.1 Reference Temperature -- 4.2.3.2 Reference Emissivity -- 4.2.3.3 The Use of a Black Body to Measure Skin Temperature -- 4.3 The Thermographic Camera (Syn.: Infrared Camera, Thermal Imaging Camera, Thermal Imager) -- 4.3.1 Basic Mode of Operation -- 4.3.2 Performance Criteria -- 4.3.2.1 The Spectral Region -- 4.3.2.2 Thermal Resolution, Relative and Absolute Accuracy -- 4.3.2.3 Geometric Resolution (Syn.: Optical Resolution, Spatial Resolution) -- 4.4 Pyrometer (IR Thermometer): Basic Mode of Operation -- 4.5 Special Situations -- 4.5.1 Curved Surfaces -- 4.5.2 Optional Interventions During wIRA-HT -- 4.6 Use of Thermographic Cameras for Temperature Measurements on Phantoms -- 4.7 Relationship Between Temperatures Assessed at the Skin Surface and in Deeper Tissue Layers -- 4.8 Conclusions -- References.
5: Temperature Profiles and Oxygenation Status in Human Skin and Subcutis Upon Thermography-Controlled wIRA-Hyperthermia -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Delivery of wIRA-Hyperthermia -- 5.2.2 Noninvasive Monitoring of Skin Surface Temperatures (Thermography) -- 5.2.3 Minimally Invasive Measurement of Skin and Subcutis Temperatures (Thermometry) -- 5.2.4 Assessment of the Tissue Oxygenation Status -- 5.3 Results and Discussion -- 5.3.1 Temperature Profiles -- 5.3.2 Tissue Oxygenation -- 5.3.2.1 Oxyhemoglobin Saturations Assessed by Hyperspectral Imaging -- 5.3.2.2 Assessment of Tissue pO2 Values -- 5.4 Summary and Outlook -- References -- Part II: Clinical Practice: Oncology -- 6: Thermography-Controlled, Contact-Free wIRA-Hyperthermia Combined with Hypofractionated Radiotherapy for Large-Sized Lesions of Unresectable, Locally Recurrent Breast Cancer -- 6.1 Introduction -- 6.2 Patients and Treatments -- 6.2.1 Basic Characteristics of the Patients -- 6.2.2 Treatment Schedule -- 6.3 Results -- 6.3.1 Tumor Response and Toxicity -- 6.3.2 Local Control and Re-Recurrence -- 6.4 Conclusion and Outlook -- References -- 7: Combined Use of wIRA and Microwave or Radiofrequency Hyperthermia -- 7.1 Introduction -- 7.2 Available Equipment for Different Tumor Depths -- 7.3 Temperature Control and Thermometry -- 7.4 Treatment Schedules -- 7.5 Clinical Application of wIRA Combined with Other Hyperthermia Devices -- 7.6 Conclusions -- References -- 8: Whole-Body Hyperthermia in Oncology: Renaissance in the Immunotherapy Era? -- 8.1 Introduction -- 8.2 Techniques for Whole-Body Hyperthermia (WBH) -- 8.3 Effects of Fever-Range WBH -- 8.3.1 Effects on the Tumor Microenvironment (TME) -- 8.3.2 Effects on the Immune System -- 8.3.3 Psychoneurological Effects -- 8.3.4 Other Effects Possibly Relevant in Oncology.
8.4 Conclusions -- References -- 9: Gold Nanoparticles and Infrared Heating: Use of wIRA Irradiation -- 9.1 Introduction -- 9.1.1 Construct I -- 9.1.2 Construct II -- 9.1.3 Construct III -- 9.2 Treatments and Results -- 9.3 Conclusion -- References -- 10: Mild Hyperthermia Induced by Water-Filtered Infrared A Irradiation: A Potent Strategy to Foster Immune Recognition and Anti-Tumor Immune Responses in Superficial Cancers? -- 10.1 Introduction -- 10.2 Mild Hyperthermia Can Enhance the Delivery of Blood-Borne Anti-Tumor Immunity -- 10.3 Mild Hyperthermia Can Attenuate Tumor Hypoxia, a Potent Suppressor of Anti-Tumor Immune Reactions -- 10.4 Metabolic Reprogramming Impacts Anti-Tumor Immune Responses: Role of Mild Hyperthermia? -- 10.5 Mild Hyperthermia Augments the Synthesis of Heat ­Shock Proteins (HSPs) and Increases Tumor Antigenicity -- 10.5.1 Heat Shock Proteins (HSPs) in Normal and Tumor Cells -- 10.5.2 Role of HSPs in NK and T-Cell-Mediated Immunity -- 10.6 Conclusion -- References -- Part III: Clinical Practice: Psychiatry -- 11: Whole-Body Hyperthermia (WBH): Historical Aspects, Current Use, and Future Perspectives -- 11.1 History of Whole-Body Hyperthermia (WBH) -- 11.2 Three Levels of Whole-Body Irradiation (WBH) -- 11.3 Practical Implementation, Mechanisms of Action, Indications -- 11.3.1 Mild WBH -- 11.3.2 Fever-Range Whole-Body Hyperthermia (FRWBH) -- 11.3.3 Extreme Whole-Body Hyperthermia (WBH) -- 11.4 Contrary Effects of WBH on Blood Flow of Inner Organs and Body Periphery -- 11.5 Currently Applied WBH Techniques -- 11.6 Contraindications and Side Effects -- 11.7 Conclusion and Outlook -- References -- 12: Whole-Body Hyperthermia (WBH) in Psychiatry -- 12.1 Hyperthermia, Fever, and Mental Health -- 12.2 Whole-Body Hyperthermia (WBH) for Psychiatric Symptoms -- 12.3 Mechanisms of Action of WBH.
12.4 Current Research -- 12.4.1 Patients and Methods -- 12.4.2 Preliminary Results and Clinical Experience -- 12.5 Outlook to Future Research -- References -- Part IV: Clinical Practice: Neonatology -- 13: Mode of Action, Efficacy, and Safety of Radiant Warmers in Neonatology -- 13.1 Risk of Hypothermia in Term and Preterm Neonates -- 13.1.1 Methods of Thermal Care in Neonatology -- 13.1.2 Aim of the Studies Reported -- 13.2 Materials and Methods -- 13.2.1 Physical Investigations -- 13.2.2 Clinical Observations -- 13.3 Results and Discussion -- 13.3.1 Physical Investigations -- 13.3.2 Clinical Observations -- 13.4 Current Practice and Unresolved Issues -- 13.5 Summary and Conclusions -- References -- Part V: Clinical Practice: Dermatology -- 14: Water-Filtered Infrared A Irradiation in Wound Treatment -- 14.1 Introduction -- 14.2 Historical Notes -- 14.3 Basic Concepts and Mode of Action of wIRA -- 14.4 Clinical Application Aspects -- 14.5 wIRA for the Treatment of Acute and Chronic Wounds -- 14.5.1 Acute Wounds -- 14.5.1.1 Acute Abdominal Surgical Wounds -- 14.5.1.2 Burn Wounds -- 14.5.1.3 Experimental Wounds -- 14.5.1.4 Other Aspects and Perspectives in Acute Wounds -- 14.5.2 Chronic Wounds -- 14.5.2.1 Chronic Venous Stasis Leg Ulcers -- 14.5.2.2 Other Indications -- 14.5.3 Variable Irradiations Used in Different Studies -- 14.5.4 Conclusions and Perspectives -- References -- 15: Clinical Application of wIRA Irradiation in Burn Wounds -- 15.1 Introduction -- 15.2 Pathophysiology of Thermal Injuries -- 15.2.1 First-Degree Burns -- 15.2.2 Second-Degree Burns -- 15.2.3 Third-Degree Burns -- 15.3 wIRA Irradiation in Thermal Injuries -- 15.3.1 Effects of wIRA Irradiation on the Skin -- 15.3.2 wIRA Application in Thermal Wounds -- 15.4 Outlook to Further Research -- References.
16: Influence of wIRA Irradiation on Wound Healing: Focus on the Dermis.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.