Rangeland Systems : Processes, Management and Challenges.

By: Briske, David DMaterial type: TextTextSeries: Springer Series on Environmental Management SeriesPublisher: Cham : Springer International Publishing AG, 2017Copyright date: �2017Edition: 1st edDescription: 1 online resource (664 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9783319467092Genre/Form: Electronic books.Additional physical formats: Print version:: Rangeland SystemsLOC classification: GE300-350Online resources: Click to View
Contents:
Intro -- Preface -- Contents -- Contributors -- Chapter 1: Rangeland Systems: Foundation for a Conceptual Framework -- 1.1 Introduction -- 1.2 Extent, Distribution, and Societal Value -- 1.3 Events Contributing to Rapid Conceptual Advancement -- 1.3.1 Internal to the Profession -- 1.3.2 External to Profession -- 1.4 Section Perspectives -- 1.4.1 Processes Section -- 1.4.2 Management Section -- 1.4.3 Challenges Section -- 1.5 Foundation for a Rangeland Systems Framework -- 1.6 Summary -- References -- Section I: Processes -- Chapter 2: Woody Plant Encroachment: Causes and Consequences -- 2.1 Introduction -- 2.2 Rates of Change -- 2.3 Factors Influencing Abundance of Woody Plants -- 2.3.1 Herbivory: Grazers and Browsers -- 2.3.2 Climate -- 2.3.3 Topography and Soils -- 2.3.4 Increased Atmospheric CO2 -- 2.4 Population Interactions Between Grasses and Woody Plants -- 2.4.1 Establishment of Woody Plant Seedlings -- 2.4.2 Transitioning from Saplings to Adults -- 2.4.3 Woody Plant Carrying Capacity -- 2.4.4 Why Do So Few Woody Species Proliferate in Grasslands? -- 2.5 Ecosystem Services -- 2.5.1 Carbon Sequestration: Plant and Soil Pools -- 2.5.2 Hydrology -- 2.5.3 Biodiversity -- 2.5.3.1 Herbaceous Vegetation -- 2.5.3.2 Animals -- 2.6 Management Perspectives -- 2.7 Future Perspectives -- 2.8 Summary -- 2.8.1 Causes -- 2.8.2 Consequences for Ecosystem Services -- 2.8.3 Management -- References -- Chapter 3: Ecohydrology: Processes and Implications for Rangelands -- 3.1 Introduction -- 3.2 Ecosystem Services -- 3.2.1 Regulating Services: Water Distribution and Purification -- 3.2.1.1 Infiltration: Water Regulation at the Soil Surface -- 3.2.2 Overland Flow: Regulation at the Hillslope Scale -- 3.2.3 Drainage: Water Regulation Within the Soil -- 3.2.4 Riparian Systems: Regulation at the Watershed Scale.
3.2.5 Regulation in Groundwater-Coupled Rangelands -- 3.2.5.1 Vegetation Dynamics Affect Groundwater Consumption -- 3.2.5.2 Land Use/Management Affects Groundwater Consumption -- 3.3 Regulating Services: Climate Regulation -- 3.4 Supporting Services: Water Cycling and Protection Against Erosion -- 3.4.1 Water Cycling: With a Focus on E vs. T -- 3.4.2 Protection of Soils Against Erosion and Degradation -- 3.4.2.1 Understanding the Importance of Vegetation Patch Structure -- 3.4.2.2 Wind and Water Erosion -- 3.5 Provisioning Services: Water Supply -- 3.6 Observational and Conceptual Advances -- 3.6.1 Observational Advances -- 3.6.1.1 Remote Sensing for Investigating Components of the Water Budget -- 3.6.1.2 In Situ Methods for Measuring Components of the Water Budget -- Partitioning of Evapotranspiration -- Monitoring of Soil Moisture -- 3.7 Conceptual Advances -- 3.7.1 Spatial Variability and Scale -- 3.7.2 Ecological Threshold and Feedback Mechanisms -- 3.7.3 Hydrological Connectivity -- 3.8 Future Perspectives -- 3.9 Summary -- References -- Chapter 4: Soil and Belowground Processes -- 4.1 Introduction -- 4.2 Major Conceptual Advances -- 4.2.1 Community Composition and Function -- 4.2.1.1 Soil-Plant Interactions -- 4.2.1.2 Biological Soil Crusts -- 4.2.1.3 Soil Microbial Diversity and Function -- 4.2.2 Ecosystem Processes -- 4.2.2.1 Water -- 4.2.2.2 Decomposition -- 4.2.2.3 Rhizosphere Dynamics -- 4.2.2.4 Carbon Dynamics -- 4.2.2.5 Nitrogen Dynamics -- 4.3 Anthropogenic Impacts and Societal Implications -- 4.3.1 Responses to Land-Use Change -- 4.3.2 Responses to Invasive Species -- 4.3.3 Responses to Global Climate Change -- 4.3.3.1 Precipitation Change -- 4.3.3.2 Elevated CO2 -- 4.3.3.3 Atmospheric Deposition -- 4.3.4 Restoration -- 4.4 Future Perspectives -- 4.5 Summary -- References.
Chapter 5: Heterogeneity as the Basis for Rangeland Management -- 5.1 Introduction -- 5.2 Heterogeneity and Scale: Concepts Linking Pattern and Process -- 5.2.1 Types of Heterogeneity -- 5.2.1.1 Measured vs. Functional -- 5.2.1.2 Spatial vs. Temporal -- 5.2.2 Sources of Heterogeneity -- 5.2.2.1 Inherent Heterogeneity -- 5.2.2.2 Disturbance-Driven Heterogeneity -- 5.3 Heterogeneity and Rangeland Function: Three Major Cases -- 5.3.1 Heterogeneity and Herbivore Populations -- 5.3.2 Fire and Rangeland Ecosystems -- 5.3.2.1 Heterogeneity and the Shifting Mosaic -- 5.3.3 Heterogeneity of Fuel and Fire Effects -- 5.3.4 Biodiversity and Ecosystem Function -- 5.4 Future Perspectives -- 5.5 Summary -- References -- Chapter 6: Nonequilibrium Ecology and Resilience Theory -- 6.1 Introduction -- 6.2 Conceptual Advances -- 6.2.1 Equilibrium and Nonequilibrium Ecology -- 6.2.2 Engineering Versus Ecological Resilience -- 6.2.3 Drivers, Controlling Variables, and Feedback Mechanisms -- 6.2.4 Threshold Indicators -- 6.2.5 Rethinking Rangeland Ecology -- 6.2.5.1 Range Model -- 6.2.5.2 Nonequilibrium Persistent Model -- 6.2.5.3 The State-and-Transition Model -- 6.2.6 What Has Been Learned? -- 6.3 Resilience of Social-Ecological Systems -- 6.3.1 Resilience Thinking -- 6.3.1.1 Social Resilience -- 6.3.1.2 Adaptive Capacity and Social Learning -- 6.3.1.3 Anticipating System Transformation -- 6.3.2 Resilience-Based Governance and Policy -- 6.3.3 Resilience Analysis and Management -- 6.3.4 What Has Been Learned? -- 6.4 Future Perspectives -- 6.4.1 Heterogeneity and Livestock-Vegetation Dynamics -- 6.4.2 Procedures to Implement Resilience-Based Management -- 6.4.3 Recognizing and Guiding Transformation -- 6.4.4 Institutional Reorganization to Promote Resilience -- 6.5 Summary -- References -- Chapter 7: Ecological Consequences of Climate Change on Rangelands.
7.1 Introduction -- 7.2 Recent Climatic Trends: A Climate Change Signature -- 7.3 Climate Change Projections -- 7.4 Key Scientific Principles for Projecting Climate Change Impacts -- 7.4.1 Magnified Greenhouse Effects Are Irreversible -- 7.4.2 Ecological Consequences of Climate Change Will Vary Regionally -- 7.4.3 Climate Drivers Have Unique but Potentially Interactive Effects on Plants and Ecosystem Processes -- 7.4.4 Rangelands Will Respond Strongly to Driver Effects on Soil Water Availability -- 7.4.5 Soil Nitrogen (N) Availability both Regulates the Response of Plant Productivity (NPP) to Climate Change Drivers and Is Affected by Drivers -- 7.4.6 Ecosystem Responses to Climate Change Drivers Vary Because of Differences in Management Practices and Historical Land-Use Patterns -- 7.4.7 Climate Change Drivers Affect Livestock Production both Directly and Indirectly -- 7.4.8 Climate Change Indirectly Affects Vegetation Composition and Structure by Influencing Fire Regimes -- 7.4.9 Climate Change May Lead to Communities That Are Unlike any Found Today, with Important Consequences for Ecosystem Function and Management -- 7.4.10 Increased Climatic Variability Increases Fluctuations in Ecological Systems, Rendering Sustainable Management More Difficult -- 7.5 An Assessment of Climate Change Scenarios -- 7.5.1 Warmer, Drier Climate Scenario -- 7.5.2 Warmer, Wetter Winters Scenario -- 7.5.3 Warmer, Wetter Growing Season Scenario -- 7.6 Knowledge Gaps -- 7.7 Summary -- References -- Section II: Management -- Chapter 8: Rangelands as Social-Ecological Systems -- 8.1 Introduction: What Is a Social-Ecological System? -- 8.1.1 Conceptualizing SESs -- 8.1.2 Scale -- 8.1.3 Feedbacks -- 8.1.4 Resilience and Adaptability -- 8.2 Environmental Governance -- 8.3 Case Studies -- 8.3.1 Adaptation to Climate Change by Australian Livestock Managers.
8.3.2 Climate Change and Forb Restoration in the Great Basin, USA -- 8.3.3 California Black Rail Habitat in the Sierra Nevada Foothills -- 8.3.4 Nomad Sedentarization Project in Xinjiang, China -- 8.3.5 Environmental Accounting for Spanish Private Dehesa Properties -- 8.4 What Can Be Learned from These Case Studies? -- 8.5 Future Perspectives -- 8.6 Summary -- References -- Chapter 9: State and Transition Models: Theory, Applications, and Challenges -- 9.1 Introduction -- 9.2 Conceptual Advances in the Ecology of State Transitions -- 9.2.1 Transient Dynamics -- 9.2.2 State Transitions -- 9.2.3 Distinguishing Transient Dynamics from State Transitions -- 9.3 Development of State and Transition Models -- 9.3.1 Define the "Site" -- 9.3.2 Define the Alternative States -- 9.3.3 Describe Transitions -- 9.4 Development and Applications of STMs in Rangeland Management -- 9.4.1 Australia -- 9.4.1.1 History -- 9.4.1.2 Current Applications -- 9.4.2 Argentina -- 9.4.2.1 History -- 9.4.2.2 Current Applications -- 9.4.3 United States -- 9.4.3.1 History -- 9.4.3.2 Current Applications -- 9.4.4 Mongolia -- 9.4.4.1 History -- 9.4.4.2 Current Applications -- 9.4.5 Summary of STM Applications -- 9.5 Knowledge Gaps -- 9.5.1 Reference States, History, and Novel Ecosystems -- 9.5.2 Broader Representation of Ecosystem Services -- 9.5.3 Climate Change -- 9.5.4 Testable Mechanisms -- 9.5.5 Information Delivery and Use -- 9.6 Future Perspectives -- 9.6.1 Participatory Approaches to Model Development -- 9.6.2 Structured Decision-Making via State and Transition Models -- 9.6.3 Mapping State-and-Transition Model Information -- 9.7 Summary -- References -- Chapter 10: Livestock Production Systems -- 10.1 Introduction -- 10.1.1 Goals and Objectives -- 10.1.2 Global Significance of Ruminant Livestock -- 10.1.3 Global Livestock Production.
10.1.4 Economics of Livestock Production: The US Cattle Example.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Preface -- Contents -- Contributors -- Chapter 1: Rangeland Systems: Foundation for a Conceptual Framework -- 1.1 Introduction -- 1.2 Extent, Distribution, and Societal Value -- 1.3 Events Contributing to Rapid Conceptual Advancement -- 1.3.1 Internal to the Profession -- 1.3.2 External to Profession -- 1.4 Section Perspectives -- 1.4.1 Processes Section -- 1.4.2 Management Section -- 1.4.3 Challenges Section -- 1.5 Foundation for a Rangeland Systems Framework -- 1.6 Summary -- References -- Section I: Processes -- Chapter 2: Woody Plant Encroachment: Causes and Consequences -- 2.1 Introduction -- 2.2 Rates of Change -- 2.3 Factors Influencing Abundance of Woody Plants -- 2.3.1 Herbivory: Grazers and Browsers -- 2.3.2 Climate -- 2.3.3 Topography and Soils -- 2.3.4 Increased Atmospheric CO2 -- 2.4 Population Interactions Between Grasses and Woody Plants -- 2.4.1 Establishment of Woody Plant Seedlings -- 2.4.2 Transitioning from Saplings to Adults -- 2.4.3 Woody Plant Carrying Capacity -- 2.4.4 Why Do So Few Woody Species Proliferate in Grasslands? -- 2.5 Ecosystem Services -- 2.5.1 Carbon Sequestration: Plant and Soil Pools -- 2.5.2 Hydrology -- 2.5.3 Biodiversity -- 2.5.3.1 Herbaceous Vegetation -- 2.5.3.2 Animals -- 2.6 Management Perspectives -- 2.7 Future Perspectives -- 2.8 Summary -- 2.8.1 Causes -- 2.8.2 Consequences for Ecosystem Services -- 2.8.3 Management -- References -- Chapter 3: Ecohydrology: Processes and Implications for Rangelands -- 3.1 Introduction -- 3.2 Ecosystem Services -- 3.2.1 Regulating Services: Water Distribution and Purification -- 3.2.1.1 Infiltration: Water Regulation at the Soil Surface -- 3.2.2 Overland Flow: Regulation at the Hillslope Scale -- 3.2.3 Drainage: Water Regulation Within the Soil -- 3.2.4 Riparian Systems: Regulation at the Watershed Scale.

3.2.5 Regulation in Groundwater-Coupled Rangelands -- 3.2.5.1 Vegetation Dynamics Affect Groundwater Consumption -- 3.2.5.2 Land Use/Management Affects Groundwater Consumption -- 3.3 Regulating Services: Climate Regulation -- 3.4 Supporting Services: Water Cycling and Protection Against Erosion -- 3.4.1 Water Cycling: With a Focus on E vs. T -- 3.4.2 Protection of Soils Against Erosion and Degradation -- 3.4.2.1 Understanding the Importance of Vegetation Patch Structure -- 3.4.2.2 Wind and Water Erosion -- 3.5 Provisioning Services: Water Supply -- 3.6 Observational and Conceptual Advances -- 3.6.1 Observational Advances -- 3.6.1.1 Remote Sensing for Investigating Components of the Water Budget -- 3.6.1.2 In Situ Methods for Measuring Components of the Water Budget -- Partitioning of Evapotranspiration -- Monitoring of Soil Moisture -- 3.7 Conceptual Advances -- 3.7.1 Spatial Variability and Scale -- 3.7.2 Ecological Threshold and Feedback Mechanisms -- 3.7.3 Hydrological Connectivity -- 3.8 Future Perspectives -- 3.9 Summary -- References -- Chapter 4: Soil and Belowground Processes -- 4.1 Introduction -- 4.2 Major Conceptual Advances -- 4.2.1 Community Composition and Function -- 4.2.1.1 Soil-Plant Interactions -- 4.2.1.2 Biological Soil Crusts -- 4.2.1.3 Soil Microbial Diversity and Function -- 4.2.2 Ecosystem Processes -- 4.2.2.1 Water -- 4.2.2.2 Decomposition -- 4.2.2.3 Rhizosphere Dynamics -- 4.2.2.4 Carbon Dynamics -- 4.2.2.5 Nitrogen Dynamics -- 4.3 Anthropogenic Impacts and Societal Implications -- 4.3.1 Responses to Land-Use Change -- 4.3.2 Responses to Invasive Species -- 4.3.3 Responses to Global Climate Change -- 4.3.3.1 Precipitation Change -- 4.3.3.2 Elevated CO2 -- 4.3.3.3 Atmospheric Deposition -- 4.3.4 Restoration -- 4.4 Future Perspectives -- 4.5 Summary -- References.

Chapter 5: Heterogeneity as the Basis for Rangeland Management -- 5.1 Introduction -- 5.2 Heterogeneity and Scale: Concepts Linking Pattern and Process -- 5.2.1 Types of Heterogeneity -- 5.2.1.1 Measured vs. Functional -- 5.2.1.2 Spatial vs. Temporal -- 5.2.2 Sources of Heterogeneity -- 5.2.2.1 Inherent Heterogeneity -- 5.2.2.2 Disturbance-Driven Heterogeneity -- 5.3 Heterogeneity and Rangeland Function: Three Major Cases -- 5.3.1 Heterogeneity and Herbivore Populations -- 5.3.2 Fire and Rangeland Ecosystems -- 5.3.2.1 Heterogeneity and the Shifting Mosaic -- 5.3.3 Heterogeneity of Fuel and Fire Effects -- 5.3.4 Biodiversity and Ecosystem Function -- 5.4 Future Perspectives -- 5.5 Summary -- References -- Chapter 6: Nonequilibrium Ecology and Resilience Theory -- 6.1 Introduction -- 6.2 Conceptual Advances -- 6.2.1 Equilibrium and Nonequilibrium Ecology -- 6.2.2 Engineering Versus Ecological Resilience -- 6.2.3 Drivers, Controlling Variables, and Feedback Mechanisms -- 6.2.4 Threshold Indicators -- 6.2.5 Rethinking Rangeland Ecology -- 6.2.5.1 Range Model -- 6.2.5.2 Nonequilibrium Persistent Model -- 6.2.5.3 The State-and-Transition Model -- 6.2.6 What Has Been Learned? -- 6.3 Resilience of Social-Ecological Systems -- 6.3.1 Resilience Thinking -- 6.3.1.1 Social Resilience -- 6.3.1.2 Adaptive Capacity and Social Learning -- 6.3.1.3 Anticipating System Transformation -- 6.3.2 Resilience-Based Governance and Policy -- 6.3.3 Resilience Analysis and Management -- 6.3.4 What Has Been Learned? -- 6.4 Future Perspectives -- 6.4.1 Heterogeneity and Livestock-Vegetation Dynamics -- 6.4.2 Procedures to Implement Resilience-Based Management -- 6.4.3 Recognizing and Guiding Transformation -- 6.4.4 Institutional Reorganization to Promote Resilience -- 6.5 Summary -- References -- Chapter 7: Ecological Consequences of Climate Change on Rangelands.

7.1 Introduction -- 7.2 Recent Climatic Trends: A Climate Change Signature -- 7.3 Climate Change Projections -- 7.4 Key Scientific Principles for Projecting Climate Change Impacts -- 7.4.1 Magnified Greenhouse Effects Are Irreversible -- 7.4.2 Ecological Consequences of Climate Change Will Vary Regionally -- 7.4.3 Climate Drivers Have Unique but Potentially Interactive Effects on Plants and Ecosystem Processes -- 7.4.4 Rangelands Will Respond Strongly to Driver Effects on Soil Water Availability -- 7.4.5 Soil Nitrogen (N) Availability both Regulates the Response of Plant Productivity (NPP) to Climate Change Drivers and Is Affected by Drivers -- 7.4.6 Ecosystem Responses to Climate Change Drivers Vary Because of Differences in Management Practices and Historical Land-Use Patterns -- 7.4.7 Climate Change Drivers Affect Livestock Production both Directly and Indirectly -- 7.4.8 Climate Change Indirectly Affects Vegetation Composition and Structure by Influencing Fire Regimes -- 7.4.9 Climate Change May Lead to Communities That Are Unlike any Found Today, with Important Consequences for Ecosystem Function and Management -- 7.4.10 Increased Climatic Variability Increases Fluctuations in Ecological Systems, Rendering Sustainable Management More Difficult -- 7.5 An Assessment of Climate Change Scenarios -- 7.5.1 Warmer, Drier Climate Scenario -- 7.5.2 Warmer, Wetter Winters Scenario -- 7.5.3 Warmer, Wetter Growing Season Scenario -- 7.6 Knowledge Gaps -- 7.7 Summary -- References -- Section II: Management -- Chapter 8: Rangelands as Social-Ecological Systems -- 8.1 Introduction: What Is a Social-Ecological System? -- 8.1.1 Conceptualizing SESs -- 8.1.2 Scale -- 8.1.3 Feedbacks -- 8.1.4 Resilience and Adaptability -- 8.2 Environmental Governance -- 8.3 Case Studies -- 8.3.1 Adaptation to Climate Change by Australian Livestock Managers.

8.3.2 Climate Change and Forb Restoration in the Great Basin, USA -- 8.3.3 California Black Rail Habitat in the Sierra Nevada Foothills -- 8.3.4 Nomad Sedentarization Project in Xinjiang, China -- 8.3.5 Environmental Accounting for Spanish Private Dehesa Properties -- 8.4 What Can Be Learned from These Case Studies? -- 8.5 Future Perspectives -- 8.6 Summary -- References -- Chapter 9: State and Transition Models: Theory, Applications, and Challenges -- 9.1 Introduction -- 9.2 Conceptual Advances in the Ecology of State Transitions -- 9.2.1 Transient Dynamics -- 9.2.2 State Transitions -- 9.2.3 Distinguishing Transient Dynamics from State Transitions -- 9.3 Development of State and Transition Models -- 9.3.1 Define the "Site" -- 9.3.2 Define the Alternative States -- 9.3.3 Describe Transitions -- 9.4 Development and Applications of STMs in Rangeland Management -- 9.4.1 Australia -- 9.4.1.1 History -- 9.4.1.2 Current Applications -- 9.4.2 Argentina -- 9.4.2.1 History -- 9.4.2.2 Current Applications -- 9.4.3 United States -- 9.4.3.1 History -- 9.4.3.2 Current Applications -- 9.4.4 Mongolia -- 9.4.4.1 History -- 9.4.4.2 Current Applications -- 9.4.5 Summary of STM Applications -- 9.5 Knowledge Gaps -- 9.5.1 Reference States, History, and Novel Ecosystems -- 9.5.2 Broader Representation of Ecosystem Services -- 9.5.3 Climate Change -- 9.5.4 Testable Mechanisms -- 9.5.5 Information Delivery and Use -- 9.6 Future Perspectives -- 9.6.1 Participatory Approaches to Model Development -- 9.6.2 Structured Decision-Making via State and Transition Models -- 9.6.3 Mapping State-and-Transition Model Information -- 9.7 Summary -- References -- Chapter 10: Livestock Production Systems -- 10.1 Introduction -- 10.1.1 Goals and Objectives -- 10.1.2 Global Significance of Ruminant Livestock -- 10.1.3 Global Livestock Production.

10.1.4 Economics of Livestock Production: The US Cattle Example.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.