Environmental Technologies to Treat Selenium Pollution : Principles and Engineering.

By: Lens, PietContributor(s): Pakshirajan, KannanMaterial type: TextTextSeries: Integrated Environmental Technology SeriesPublisher: London : IWA Publishing, 2021Copyright date: �2021Edition: 1st edDescription: 1 online resource (404 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781789061055Genre/Form: Electronic books.Additional physical formats: Print version:: Environmental Technologies to Treat Selenium PollutionDDC classification: 363.73849 Online resources: Click to View
Contents:
Cover -- Contents -- Preface -- List of Contributors -- Part I: The Selenium Cycle -- Chapter 1: Selenium in the environment -- 1.1 INTRODUCTION -- 1.1.1 Historical background -- 1.1.2 The rising of interest in selenium research -- 1.1.3 Microbial processing of selenium -- 1.2 SELENIUM CHEMISTRY -- 1.2.1 Chemical features of selenium -- 1.2.2 Pourbaix diagram of selenium in water The behaviour of selenium in aqueous solution is dependent on redox -- 1.2.3 Global uses of selenium -- 1.3 SELENIUM IN THE ENVIRONMENT -- 1.3.1 Selenium mineralogy -- 1.3.2 Selenium geochemistry -- 1.3.3 Source of selenium in the environment -- 1.3.3.1 Selenium in soils -- 1.3.3.2 Selenium in waters -- 1.3.3.3 Selenium in air -- 1.3.3.4 Selenium in plants -- 1.3.3.5 Selenium in food and feed -- 1.3.3.6 Selenium in animals and humans -- 1.4 EFFECTS AND BIOAVAILABILITY OF NANO-SELENIUM (SeNPs) -- REFERENCES -- Chapter 2: Radioactive selenium: origin and environmental dispersion scenarios -- 2.1 INTRODUCTION -- 2.2 CHARACTERISTICS OF RADIOACTIVE SELENIUM -- 2.2.1 Environmental persistence: half-lives and decay modes -- 2.2.2 Sources and applications -- 2.2.2.1 Natural geogenic 82Se -- 2.2.2.2 Anthropogenic radiotracer 75Se -- 2.2.2.3 Anthropogenic 79Se from nuclear fission -- 2.3 SAMPLE COLLECTION AND QUANTIFICATION TECHNIQUES -- 2.3.1 Environmental sampling -- 2.3.2 Analytical methods -- 2.4 PRODUCTION AND MOBILITY OF 79Se IN NUCLEAR WASTE REPOSITORIES -- 2.4.1 Estimated activities in the nuclear waste -- 2.4.2 Underground reactivity and dispersion -- 2.4.2.1 The multi-barrier system: from the fuel to the host rock -- 2.4.2.2 Reactivity within the host rock: mobility and dispersion of Se species -- 2.4.2.3 Simulated environmental releases -- 2.5 ENVIRONMENTAL DISPERSION SCENARIOS -- 2.5.1 Conceptual model and assumptions.
2.5.2 Biogeochemical behaviour in aquatic systems -- 2.5.3 Biogeochemical behaviour in terrestrial systems -- 2.6 IMPACT OF RADIOACTIVE Se ON THE BIOSPHERE: INSIGHTS FROM ECOLOGICAL MODELS -- 2.6.1 Bioaccumulation factors in aquatic and terrestrial systems -- 2.6.2 Human radiotoxicity: exposure pathways and estimated doses -- 2.7 CONCLUSIONS -- REFERENCES -- Chapter 3: Microbial reduction of selenium oxyanions: energy-yielding and detoxification reactions -- 3.1 INTRODUCTION -- 3.2 SELENIUM OXYANIONS AS FINAL ELECTRON ACCEPTORS IN BACTERIAL ENERGY METABOLISM -- 3.2.1 Bacterial selenate respiration -- 3.2.2 Bacterial selenite respiration -- 3.3 STRATEGIES FOR THE DETOXIFICATION OF SELENIUM OXYANIONS IN BACTERIA -- 3.3.1 Enzymatic detoxification -- 3.3.2 Thiol driven reactions -- 3.3.2.1 Reaction mechanisms -- 3.3.2.2 Microbial strategies for thiol based Se detoxification -- 3.3.2.2.1 Gram negative bacteria -- 3.3.2.2.2 Gram positive bacteria -- 3.3.3 Siderophore driven detoxification -- 3.4 BIOTRANSFORMATION OF SELENIUM OXYANIONS BY ARCHAEA -- 3.5 FUNGAL TRANSFORMATION OF SELENIUM OXYANIONS -- 3.5.1 Introduction -- 3.5.2 Yeasts -- 3.5.3 Filamentous fungi -- 3.5.4 Higher fungi (mushrooms) -- 3.5.4.1 Ascomycetes -- 3.5.4.2 Basidiomycetes -- 3.5.5 Selenium reduction by cell extracts -- 3.6 FUTURE PERSPECTIVES -- REFERENCES -- Chapter 4: Microbial ecology of selenium-respiring bacteria -- 4.1 SELENIUM, SULFUR, AND NITROGEN IN A COMMON AQUATIC ENVIRONMENT -- 4.2 SUBSTRATE PARTITIONING, ENERGETICS, AND BIOMASS YIELD -- 4.2.1 Electron-acceptor reductions -- 4.2.2 Oxidation of a common electron donor -- 4.2.3 Energy reactions -- 4.2.4 Considering biomass synthesis -- 4.3 MATHEMATICAL MODEL OF DENITRIFYING HETEROTROPHIC BACTERIA, SELENIUM-RESPIRING BACTERIA, AND SULFATE-REDUCING BACTERIA -- 4.4 MINIMUM SRT AND DONOR-SUBSTRATE CONCENTRATION.
4.5 SIMULATION OF SeRB POPULATION DYNAMICS -- 4.5.1 Model comparison with observed selenium oxyanion reduction -- 4.5.2 Ecology of denitrifying heterotrophic bacteria, selenium-respiring bacteria, and sulfate-reducing bacteria -- 4.6 KEY POINTS -- REFERENCES -- Part II: Remediation of Selenium Contamination -- Chapter 5: Reactivity and selectivity of zerovalent iron toward selenium oxyanions under aerobic conditions -- 5.1 AQUEOUS CHEMISTRY OF ZVI WITH SELENIUM -- 5.2 WMF ENHANCES THE REACTIVITY AND SELECTIVITY OF ZVI TOWARD Se(IV) AND Se(VI) -- 5.2.1 Effect of WMF on the reactivity of ZVI toward Se(IV)/Se(VI) -- 5.2.2 Effect of WMF on the selectivity of ZVI toward Se(IV)/Se(VI) -- 5.2.3 Contributions of WMF to the improved reactivity and selectivity of ZVI toward Se(IV)/Se(VI) -- 5.3 FERROUS ION ENHANCES THE REACTIVITY AND SELECTIVITY OF ZVI TOWARD Se(VI) -- 5.3.1 Influence of Fe(II) on the reactivity of ZVI towards Se(VI) -- 5.3.2 Influence of Fe(II) on the selectivity of ZVI towards Se(VI) -- 5.3.3 Role of Fe(II) in improving the reactivity and selectivity of ZVI for Se(VI) reduction -- 5.4 SULFIDATION TREATMENT ENHANCES THE REACTIVITY AND SELECTIVITY OF ZVI TOWARD Se(VI) -- 5.4.1 Influence of sulfidation on the reactivity of ZVI toward Se(VI) -- 5.4.2 Influence of sulfidation on the selectivity of ZVI toward Se(VI) -- 5.4.3 Coupled effects of sulfidation and ferrous dosing on Se(VI) removal by ZVI -- 5.5 OUTLOOK -- REFERENCES -- Chapter 6: Biological treatment technologies -- 6.1 INTRODUCTION -- 6.2 PRINCIPLES OF SELENIUM BIOREMEDIATION IN BIOREACTOR SYSTEMS -- 6.3 HISTORY AND CURRENT PRACTICE OF SELENIUM BIOREMEDIATION -- 6.4 ATTACHED BIOFILM REACTORS -- 6.4.1 Packed bed reactor -- 6.4.2 Fluidized bed reactor -- 6.4.3 Combination of expanded bed and packed bed reactor configuration -- 6.4.4 Moving bed biofilm reactor (MBBR).
6.5 SUSPENDED GROWTH SYSTEMS -- 6.5.1 Biofloc systems -- 6.5.1.1 Continuous stirred tank system -- 6.5.1.2 Activated sludge systems -- 6.5.1.3 Membrane bioreactors -- 6.5.2 Granular sludge systems -- 6.6 PASSIVE AND SEMI-PASSIVE BIOREACTOR SYSTEMS -- 6.6.1 Constructed wetlands -- 6.6.2 Biochemical reactors -- 6.6.3 Gravel bed reactors -- 6.6.4 Submerged rock fills in mining applications -- 6.7 OTHER REACTOR TYPES -- 6.7.1 Fungal based bioreactors -- 6.7.2 Electro-biochemical reactor -- 6.7.3 Hydrogen based membrane biofilm reactor -- 6.8 FUTURE PERSPECTIVES FOR OPTIMIZING BIOLOGICAL SELENIUM REMOVAL TECHNOLOGIES -- 6.8.1 Selenium measurement and speciation -- 6.8.2 Bioavailability of reduced selenium species in treated effluents -- 6.8.3 Bioprocess operations -- 6.8.3.1 Bioreactor sizing and design optimization -- 6.8.3.2 Better understanding and optimization of passive treatment designs -- 6.8.3.3 Optimization of selenium reduction at municipal wastewater treatment plants -- 6.8.3.4 Selenium treatment residuals handling and long-term management -- REFERENCES -- Chapter 7: In situ and ex situ bioremediation of seleniferous soils and sediments -- 7.1 INTRODUCTION -- 7.2 METABOLIC ROLE OF SELENIUM -- 7.2.1 Selenium essentiality -- 7.2.2 Selenium toxicity -- 7.2.3 Selenium deficiency -- 7.2.4 Selenium bioavailability -- 7.3 SELENIUM GEOCHEMISTRY IN SELENIFEROUS SOILS AND SEDIMENTS -- 7.4 BIOREMEDIATION OF SELENIFEROUS SOILS -- 7.4.1 In situ treatment -- 7.4.2 Ex situ treatment by soil flushing -- 7.4.3 Ex situ treatment by soil washing -- 7.5 BIOLOGICAL TREATMENT OF SELENIFEROUS SOIL WASHING WATER AND SELENIUM-CONTAMINATED GROUNDWATER -- 7.5.1 UASB reactors -- 7.5.1.1 Treatment of soil leachate -- 7.5.1.2 Presence of tellurium -- 7.5.1.3 Presence of other oxyanions -- 7.5.1.3.1 Granular versus biofilm reactor systems.
7.5.1.3.2 Adsorption coupled to biological selenium removal processes -- 7.5.1.4 Presence of heavy metals -- 7.5.2 Aerobic reactors -- 7.5.3 Membrane reactors -- 7.5.4 Bioelectrochemical processes -- 7.6 COUPLING SELENIFEROUS SOIL REMEDIATION TO RESOURCE RECOVERY -- 7.6.1 Biofortification -- 7.6.2 Recovery of biologically produced nanomaterials -- REFERENCES -- Part III: Selenium Biofortification -- Chapter 8: Selenium hyperaccumulation in plants -- 8.1 INTRODUCTION -- 8.2 VARIATION IN Se ACCUMULATION BETWEEN HYPERACCUMULATORS AND NON-HYPERACCUMULATORS -- 8.2.1 Se uptake in plants -- 8.2.2 Se accumulators and hyperaccumulating plants -- 8.2.3 Se-hyperaccumulating plant species -- 8.2.4 Se uptake in Se-hyperaccumulators -- 8.3 METABOLIC PATHWAYS SUPPORTING Se HYPERACCUMULATION -- 8.3.1 Se metabolism in non-hyperaccumulating plants -- 8.3.2 Organo-Se synthesis in hyperaccumulating plants -- 8.3.3 Enzymology of organo-Se formation -- 8.4 EVOLUTION OF THE Se HYPERACCUMULATION TRAIT -- 8.4.1 Main driving-factors -- 8.4.2 Metabolic defense mechanisms -- 8.4.3 Plant ecology -- 8.5 POTENTIAL USES OF Se-HYPERACCUMULATORS IN PHYTOTECHNOLOGIES -- 8.5.1 Phytoremediation -- 8.5.2 Biofortification -- 8.5.3 Agromining -- 8.6 CONCLUSION -- REFERENCES -- Chapter 9: Selenium biofortification for human and animal nutrition -- 9.1 INTRODUCTION -- 9.2 SELENIUM TOXICITY AND DEFICIENCY FOR HUMANS AND ANIMALS -- 9.2.1 Se toxicity -- 9.2.2 Se deficiency -- 9.2.3 Se in nutrition -- 9.3 SELENIUM BIOFORTIFICATION STRATEGIES FOR ADDRESSING Se DEFICIENCY -- 9.3.1 Conventional plant breeding and genetic engineering -- 9.3.2 Agronomic biofortification -- 9.3.2.1 Soil inorganic Se fertilizer application -- 9.3.2.2 Foliar Se fertilizer application -- 9.3.2.3 Novel Se fertilizers -- 9.3.2.3.1 Se-enriched organic materials as Se fertilizers -- 9.3.2.3.2 Nano-Se for biofortification.
9.3.2.4 Microbial assistance of biofortification.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Contents -- Preface -- List of Contributors -- Part I: The Selenium Cycle -- Chapter 1: Selenium in the environment -- 1.1 INTRODUCTION -- 1.1.1 Historical background -- 1.1.2 The rising of interest in selenium research -- 1.1.3 Microbial processing of selenium -- 1.2 SELENIUM CHEMISTRY -- 1.2.1 Chemical features of selenium -- 1.2.2 Pourbaix diagram of selenium in water The behaviour of selenium in aqueous solution is dependent on redox -- 1.2.3 Global uses of selenium -- 1.3 SELENIUM IN THE ENVIRONMENT -- 1.3.1 Selenium mineralogy -- 1.3.2 Selenium geochemistry -- 1.3.3 Source of selenium in the environment -- 1.3.3.1 Selenium in soils -- 1.3.3.2 Selenium in waters -- 1.3.3.3 Selenium in air -- 1.3.3.4 Selenium in plants -- 1.3.3.5 Selenium in food and feed -- 1.3.3.6 Selenium in animals and humans -- 1.4 EFFECTS AND BIOAVAILABILITY OF NANO-SELENIUM (SeNPs) -- REFERENCES -- Chapter 2: Radioactive selenium: origin and environmental dispersion scenarios -- 2.1 INTRODUCTION -- 2.2 CHARACTERISTICS OF RADIOACTIVE SELENIUM -- 2.2.1 Environmental persistence: half-lives and decay modes -- 2.2.2 Sources and applications -- 2.2.2.1 Natural geogenic 82Se -- 2.2.2.2 Anthropogenic radiotracer 75Se -- 2.2.2.3 Anthropogenic 79Se from nuclear fission -- 2.3 SAMPLE COLLECTION AND QUANTIFICATION TECHNIQUES -- 2.3.1 Environmental sampling -- 2.3.2 Analytical methods -- 2.4 PRODUCTION AND MOBILITY OF 79Se IN NUCLEAR WASTE REPOSITORIES -- 2.4.1 Estimated activities in the nuclear waste -- 2.4.2 Underground reactivity and dispersion -- 2.4.2.1 The multi-barrier system: from the fuel to the host rock -- 2.4.2.2 Reactivity within the host rock: mobility and dispersion of Se species -- 2.4.2.3 Simulated environmental releases -- 2.5 ENVIRONMENTAL DISPERSION SCENARIOS -- 2.5.1 Conceptual model and assumptions.

2.5.2 Biogeochemical behaviour in aquatic systems -- 2.5.3 Biogeochemical behaviour in terrestrial systems -- 2.6 IMPACT OF RADIOACTIVE Se ON THE BIOSPHERE: INSIGHTS FROM ECOLOGICAL MODELS -- 2.6.1 Bioaccumulation factors in aquatic and terrestrial systems -- 2.6.2 Human radiotoxicity: exposure pathways and estimated doses -- 2.7 CONCLUSIONS -- REFERENCES -- Chapter 3: Microbial reduction of selenium oxyanions: energy-yielding and detoxification reactions -- 3.1 INTRODUCTION -- 3.2 SELENIUM OXYANIONS AS FINAL ELECTRON ACCEPTORS IN BACTERIAL ENERGY METABOLISM -- 3.2.1 Bacterial selenate respiration -- 3.2.2 Bacterial selenite respiration -- 3.3 STRATEGIES FOR THE DETOXIFICATION OF SELENIUM OXYANIONS IN BACTERIA -- 3.3.1 Enzymatic detoxification -- 3.3.2 Thiol driven reactions -- 3.3.2.1 Reaction mechanisms -- 3.3.2.2 Microbial strategies for thiol based Se detoxification -- 3.3.2.2.1 Gram negative bacteria -- 3.3.2.2.2 Gram positive bacteria -- 3.3.3 Siderophore driven detoxification -- 3.4 BIOTRANSFORMATION OF SELENIUM OXYANIONS BY ARCHAEA -- 3.5 FUNGAL TRANSFORMATION OF SELENIUM OXYANIONS -- 3.5.1 Introduction -- 3.5.2 Yeasts -- 3.5.3 Filamentous fungi -- 3.5.4 Higher fungi (mushrooms) -- 3.5.4.1 Ascomycetes -- 3.5.4.2 Basidiomycetes -- 3.5.5 Selenium reduction by cell extracts -- 3.6 FUTURE PERSPECTIVES -- REFERENCES -- Chapter 4: Microbial ecology of selenium-respiring bacteria -- 4.1 SELENIUM, SULFUR, AND NITROGEN IN A COMMON AQUATIC ENVIRONMENT -- 4.2 SUBSTRATE PARTITIONING, ENERGETICS, AND BIOMASS YIELD -- 4.2.1 Electron-acceptor reductions -- 4.2.2 Oxidation of a common electron donor -- 4.2.3 Energy reactions -- 4.2.4 Considering biomass synthesis -- 4.3 MATHEMATICAL MODEL OF DENITRIFYING HETEROTROPHIC BACTERIA, SELENIUM-RESPIRING BACTERIA, AND SULFATE-REDUCING BACTERIA -- 4.4 MINIMUM SRT AND DONOR-SUBSTRATE CONCENTRATION.

4.5 SIMULATION OF SeRB POPULATION DYNAMICS -- 4.5.1 Model comparison with observed selenium oxyanion reduction -- 4.5.2 Ecology of denitrifying heterotrophic bacteria, selenium-respiring bacteria, and sulfate-reducing bacteria -- 4.6 KEY POINTS -- REFERENCES -- Part II: Remediation of Selenium Contamination -- Chapter 5: Reactivity and selectivity of zerovalent iron toward selenium oxyanions under aerobic conditions -- 5.1 AQUEOUS CHEMISTRY OF ZVI WITH SELENIUM -- 5.2 WMF ENHANCES THE REACTIVITY AND SELECTIVITY OF ZVI TOWARD Se(IV) AND Se(VI) -- 5.2.1 Effect of WMF on the reactivity of ZVI toward Se(IV)/Se(VI) -- 5.2.2 Effect of WMF on the selectivity of ZVI toward Se(IV)/Se(VI) -- 5.2.3 Contributions of WMF to the improved reactivity and selectivity of ZVI toward Se(IV)/Se(VI) -- 5.3 FERROUS ION ENHANCES THE REACTIVITY AND SELECTIVITY OF ZVI TOWARD Se(VI) -- 5.3.1 Influence of Fe(II) on the reactivity of ZVI towards Se(VI) -- 5.3.2 Influence of Fe(II) on the selectivity of ZVI towards Se(VI) -- 5.3.3 Role of Fe(II) in improving the reactivity and selectivity of ZVI for Se(VI) reduction -- 5.4 SULFIDATION TREATMENT ENHANCES THE REACTIVITY AND SELECTIVITY OF ZVI TOWARD Se(VI) -- 5.4.1 Influence of sulfidation on the reactivity of ZVI toward Se(VI) -- 5.4.2 Influence of sulfidation on the selectivity of ZVI toward Se(VI) -- 5.4.3 Coupled effects of sulfidation and ferrous dosing on Se(VI) removal by ZVI -- 5.5 OUTLOOK -- REFERENCES -- Chapter 6: Biological treatment technologies -- 6.1 INTRODUCTION -- 6.2 PRINCIPLES OF SELENIUM BIOREMEDIATION IN BIOREACTOR SYSTEMS -- 6.3 HISTORY AND CURRENT PRACTICE OF SELENIUM BIOREMEDIATION -- 6.4 ATTACHED BIOFILM REACTORS -- 6.4.1 Packed bed reactor -- 6.4.2 Fluidized bed reactor -- 6.4.3 Combination of expanded bed and packed bed reactor configuration -- 6.4.4 Moving bed biofilm reactor (MBBR).

6.5 SUSPENDED GROWTH SYSTEMS -- 6.5.1 Biofloc systems -- 6.5.1.1 Continuous stirred tank system -- 6.5.1.2 Activated sludge systems -- 6.5.1.3 Membrane bioreactors -- 6.5.2 Granular sludge systems -- 6.6 PASSIVE AND SEMI-PASSIVE BIOREACTOR SYSTEMS -- 6.6.1 Constructed wetlands -- 6.6.2 Biochemical reactors -- 6.6.3 Gravel bed reactors -- 6.6.4 Submerged rock fills in mining applications -- 6.7 OTHER REACTOR TYPES -- 6.7.1 Fungal based bioreactors -- 6.7.2 Electro-biochemical reactor -- 6.7.3 Hydrogen based membrane biofilm reactor -- 6.8 FUTURE PERSPECTIVES FOR OPTIMIZING BIOLOGICAL SELENIUM REMOVAL TECHNOLOGIES -- 6.8.1 Selenium measurement and speciation -- 6.8.2 Bioavailability of reduced selenium species in treated effluents -- 6.8.3 Bioprocess operations -- 6.8.3.1 Bioreactor sizing and design optimization -- 6.8.3.2 Better understanding and optimization of passive treatment designs -- 6.8.3.3 Optimization of selenium reduction at municipal wastewater treatment plants -- 6.8.3.4 Selenium treatment residuals handling and long-term management -- REFERENCES -- Chapter 7: In situ and ex situ bioremediation of seleniferous soils and sediments -- 7.1 INTRODUCTION -- 7.2 METABOLIC ROLE OF SELENIUM -- 7.2.1 Selenium essentiality -- 7.2.2 Selenium toxicity -- 7.2.3 Selenium deficiency -- 7.2.4 Selenium bioavailability -- 7.3 SELENIUM GEOCHEMISTRY IN SELENIFEROUS SOILS AND SEDIMENTS -- 7.4 BIOREMEDIATION OF SELENIFEROUS SOILS -- 7.4.1 In situ treatment -- 7.4.2 Ex situ treatment by soil flushing -- 7.4.3 Ex situ treatment by soil washing -- 7.5 BIOLOGICAL TREATMENT OF SELENIFEROUS SOIL WASHING WATER AND SELENIUM-CONTAMINATED GROUNDWATER -- 7.5.1 UASB reactors -- 7.5.1.1 Treatment of soil leachate -- 7.5.1.2 Presence of tellurium -- 7.5.1.3 Presence of other oxyanions -- 7.5.1.3.1 Granular versus biofilm reactor systems.

7.5.1.3.2 Adsorption coupled to biological selenium removal processes -- 7.5.1.4 Presence of heavy metals -- 7.5.2 Aerobic reactors -- 7.5.3 Membrane reactors -- 7.5.4 Bioelectrochemical processes -- 7.6 COUPLING SELENIFEROUS SOIL REMEDIATION TO RESOURCE RECOVERY -- 7.6.1 Biofortification -- 7.6.2 Recovery of biologically produced nanomaterials -- REFERENCES -- Part III: Selenium Biofortification -- Chapter 8: Selenium hyperaccumulation in plants -- 8.1 INTRODUCTION -- 8.2 VARIATION IN Se ACCUMULATION BETWEEN HYPERACCUMULATORS AND NON-HYPERACCUMULATORS -- 8.2.1 Se uptake in plants -- 8.2.2 Se accumulators and hyperaccumulating plants -- 8.2.3 Se-hyperaccumulating plant species -- 8.2.4 Se uptake in Se-hyperaccumulators -- 8.3 METABOLIC PATHWAYS SUPPORTING Se HYPERACCUMULATION -- 8.3.1 Se metabolism in non-hyperaccumulating plants -- 8.3.2 Organo-Se synthesis in hyperaccumulating plants -- 8.3.3 Enzymology of organo-Se formation -- 8.4 EVOLUTION OF THE Se HYPERACCUMULATION TRAIT -- 8.4.1 Main driving-factors -- 8.4.2 Metabolic defense mechanisms -- 8.4.3 Plant ecology -- 8.5 POTENTIAL USES OF Se-HYPERACCUMULATORS IN PHYTOTECHNOLOGIES -- 8.5.1 Phytoremediation -- 8.5.2 Biofortification -- 8.5.3 Agromining -- 8.6 CONCLUSION -- REFERENCES -- Chapter 9: Selenium biofortification for human and animal nutrition -- 9.1 INTRODUCTION -- 9.2 SELENIUM TOXICITY AND DEFICIENCY FOR HUMANS AND ANIMALS -- 9.2.1 Se toxicity -- 9.2.2 Se deficiency -- 9.2.3 Se in nutrition -- 9.3 SELENIUM BIOFORTIFICATION STRATEGIES FOR ADDRESSING Se DEFICIENCY -- 9.3.1 Conventional plant breeding and genetic engineering -- 9.3.2 Agronomic biofortification -- 9.3.2.1 Soil inorganic Se fertilizer application -- 9.3.2.2 Foliar Se fertilizer application -- 9.3.2.3 Novel Se fertilizers -- 9.3.2.3.1 Se-enriched organic materials as Se fertilizers -- 9.3.2.3.2 Nano-Se for biofortification.

9.3.2.4 Microbial assistance of biofortification.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.