Flowing Matter.

By: Toschi, FedericoContributor(s): Sega, MarcelloMaterial type: TextTextSeries: Soft and Biological Matter SeriesPublisher: Cham : Springer International Publishing AG, 2019Copyright date: �2019Edition: 1st edDescription: 1 online resource (313 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9783030233709Genre/Form: Electronic books.Additional physical formats: Print version:: Flowing MatterLOC classification: QC173.458.S62Online resources: Click to View
Contents:
Intro -- Preface -- Contents -- 1 Numerical Approaches to Complex Fluids -- 1.1 Introduction to Complex Fluids and Rheology -- 1.2 Macroscopic Approaches -- 1.2.1 Eulerian/Eulerian Methods -- Inelastic Shear-Thinning/Thickening Fluids -- Viscoelastic Fluids -- Plastic Effects -- Fluid-Structure Interaction -- 1.3 Microscopic Approaches -- 1.3.1 Eulerian/Lagrangian Methods -- Immersed Boundary Methods for Suspensions of Rigid Particles -- Front-Tracking Methods for Suspensions of Deformable Droplets -- 1.3.2 Eulerian/Eulerian Methods -- Volume of Fluids -- Level-Set Method -- Phase-Field Methods -- 1.3.3 Other Approaches -- 1.4 Conclusions -- References -- 2 Basic Concepts of Stokes Flows -- 2.1 Introduction -- 2.2 Navier-Stokes and Stokes Equations -- 2.2.1 Navier-Stokes Equations -- 2.2.2 Stokes Flows -- 2.3 Reversibility of Fluid Flows -- 2.3.1 Examples of Reversibility -- 2.3.2 Irreversible Trajectories in Stokes Flow -- 2.4 Minimum Energy Dissipation Theorem -- 2.4.1 Statement -- 2.4.2 An Application of the Minimum Energy Dissipation Theorem -- 2.5 Limits of the Stokes Approximation -- 2.5.1 Example of a System Where the Stokes Approximation Does Not Work -- Other Linear Flow Equations -- 2.5.2 Departures from Reversibility Caused by Inertia -- 2.5.3 Accelerating Fluid Example -- 2.6 Conclusions -- References -- 3 Mesoscopic Approach to Nematic Fluids -- 3.1 Introduction to Nematic Fluids -- 3.2 Nematic Order Parameters -- 3.3 Landau-de Gennes Free Energy Approach -- 3.3.1 Landau Theory of Nematic Phase Transition -- 3.3.2 Elastic Free Energy -- 3.3.3 Surface Anchoring -- 3.3.4 Electric Field Effects -- 3.3.5 Magnetic Field Effects -- 3.4 Topological Defects -- 3.4.1 Umbilic Defects -- 3.4.2 Basics of Topological Theory of Defects -- 3.5 Nematodynamics -- 3.5.1 Ericksen Stress Tensor -- 3.5.2 Ericksen-Leslie-Parodi Approach.
3.5.3 Beris-Edwards Model -- 3.5.4 Qian-Sheng Model -- 3.5.5 Towards Active Nematics -- 3.6 Nematic Microfluidics -- 3.6.1 Nematic Flows in Channels -- 3.6.2 Nematic Microfluidic Junctions -- 3.6.3 Colloidal Particles in Nematic Microfluidic Environment -- 3.7 Nematic Colloids -- 3.7.1 Single Spherical Particle -- 3.7.2 Interparticle Interactions -- 3.7.3 Assembly and Self-assembly of Colloidal Structures -- 3.7.4 Complex-Shaped and Topological Colloids -- 3.8 Conclusions -- References -- 4 Amphiphilic Janus Particles at Interfaces -- Acronyms -- 4.1 Introduction -- 4.2 Short History of Asymmetric Janus Particles -- 4.3 General Synthetic Routes -- 4.3.1 Masking and Asymmetric Modification -- 4.3.2 Seeded Emulsion Polymerisation and Phase Separation -- 4.3.3 Microfluidic and Capillary Electro-Jetting Methods -- 4.3.4 Polymer Co-precipitation and Phase Separation -- 4.4 Tuning the Surface Polarity in JPs -- 4.5 Interfacial Activity and Adsorption at Interfaces -- 4.5.1 Contact Angle and Interfacial Adsorption Energies of HPs vs. JPs -- 4.5.2 Inter-Particle Interaction at Interfaces vs. Lowering the Interfacial Tension -- 4.5.3 Activation and Adsorption Energies of JPs Spontaneously Adsorbing at Interfaces -- 4.6 Pickering Emulsions: Arrested JPs at Interfaces -- 4.7 Self-Assembly of Janus Particles -- 4.8 JP-Based Nanomotors -- 4.9 Conclusions -- References -- 5 Upscaling Flow and Transport Processes -- 5.1 Introduction -- 5.2 Flow Through Porous and Heterogeneous Media -- 5.2.1 Darcy's Law -- 5.2.2 Extensions of Darcy's Law -- 5.2.3 Heterogeneous Media -- 5.3 Macroscopic Transport Models -- 5.3.1 Fickian Dispersion -- 5.3.2 Anomalous Dispersion -- Continuous Time Random Walks -- Multi-Rate Mass Transfer -- 5.3.3 Mixing and Chemical Reactions -- Mixing, Diffusion and Dispersion -- Chemical Reactions -- 5.4 Multiphase and Surface Processes.
5.4.1 Mass and Heat Transfer -- From Surface Processes to Averaged Reaction Rates -- 5.5 Conclusions -- Appendix A: Homogenisation and Two-Scale Expansions -- Appendix B: Volume/Ensemble Averaging -- References -- 6 Recent Developments in Particle Tracking Diagnosticsfor Turbulence Research -- 6.1 Introduction -- 6.2 A Model-Free Calibration Method -- 6.2.1 Principle -- 6.2.2 Practical Implementation -- 6.2.3 Results: Comparison with Tsai Model -- 6.2.4 Discussion -- 6.3 Particle Tracking Algorithms -- 6.3.1 Shadow Particle Tracking Velocimetry -- Experimental Setup -- The Trajectory Stereo-Matching Approach -- Flow Measurements -- 6.3.2 Improved Four-Frame Best Estimate -- 6.4 Noise Reduction in Post-Processing Statistical Analysis -- 6.4.1 Lagrangian Auto-Correlation Functions -- Results -- Discussion -- 6.4.2 Eulerian Structure Functions -- Method -- Results -- Discussion -- 6.5 Conclusions -- References -- 7 Numerical Simulations of Active Brownian Particles -- 7.1 Introduction -- 7.2 Passive Brownian Motion -- 7.3 Active Particles -- 7.3.1 Active Brownian Motion -- 7.3.2 Run-and-Tumble Motion -- 7.3.3 Chiral Active Brownian Motion -- 7.3.4 Gaussian Noise Reorientation Model -- 7.4 More Complex Models -- 7.4.1 Non-Spherical Particles -- 7.4.2 External Fields -- 7.4.3 Interacting Particles -- 7.4.4 Multiplicative Noise -- 7.5 Numerical Examples -- 7.5.1 Living Crystals -- 7.5.2 Colloids with Short-Range Aligning Interaction -- 7.6 Conclusions -- References -- 8 Active Fluids Within the Unified Coloured Noise Approximation -- 8.1 Introduction -- 8.1.1 The Genesis of the UCNA Model of Active Particles -- 8.2 The Unified Coloured Noise Approximation (UCNA) -- 8.2.1 Kinetic Approach -- 8.2.2 Stationary Solution in the Absence of Current -- 8.2.3 Fox Approximation -- 8.2.4 Entropy Production in UCNA -- 8.2.5 H-Theorem.
8.3 Born-Green-Yvon Hierarchy in the Steady State -- 8.4 Active Pressure -- 8.5 Velocity Correlations -- 8.6 Simple Applications -- 8.6.1 Active Elastic Dumbbells -- 8.6.2 Pressure of N Noninteracting Active Particles Surrounded by Harshly Repulsive Walls -- 8.7 Active Particles in a Time-Dependent Potential -- 8.7.1 Effective Potential -- 8.7.2 Dynamical UCNA and Particle Density Profile -- 8.7.3 Average Drag Force -- 8.8 Conclusions -- Appendix 1: Entropy Production and Heat Flux in the GCN -- Appendix 2: Absence of Detailed Balance Condition in the GCN -- References -- 9 Quadrature-Based Lattice Boltzmann Models for RarefiedGas Flow -- 9.1 Introduction -- 9.2 Generalities -- 9.3 One-Dimensional Quadrature-Based LB Models -- 9.3.1 Full-Range Gauss-Hermite Quadrature -- 9.3.2 Half-Range Gauss-Hermite Quadrature -- 9.4 LB Models in the Three-Dimensional Momentum Space -- 9.4.1 Reduced Distributions -- 9.4.2 Mixed Quadrature LB Models with Reduced Distribution Functions -- 9.4.3 The Lattice Boltzmann Equation -- 9.4.4 Non-Dimensionalisation Procedure -- 9.5 Simulation Results -- 9.5.1 Couette Flow Between Parallel Plates -- 9.5.2 Force-Driven Poiseuille Flow Between Parallel Plates -- 9.6 Conclusions -- Appendix: Numerical Scheme -- References -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Preface -- Contents -- 1 Numerical Approaches to Complex Fluids -- 1.1 Introduction to Complex Fluids and Rheology -- 1.2 Macroscopic Approaches -- 1.2.1 Eulerian/Eulerian Methods -- Inelastic Shear-Thinning/Thickening Fluids -- Viscoelastic Fluids -- Plastic Effects -- Fluid-Structure Interaction -- 1.3 Microscopic Approaches -- 1.3.1 Eulerian/Lagrangian Methods -- Immersed Boundary Methods for Suspensions of Rigid Particles -- Front-Tracking Methods for Suspensions of Deformable Droplets -- 1.3.2 Eulerian/Eulerian Methods -- Volume of Fluids -- Level-Set Method -- Phase-Field Methods -- 1.3.3 Other Approaches -- 1.4 Conclusions -- References -- 2 Basic Concepts of Stokes Flows -- 2.1 Introduction -- 2.2 Navier-Stokes and Stokes Equations -- 2.2.1 Navier-Stokes Equations -- 2.2.2 Stokes Flows -- 2.3 Reversibility of Fluid Flows -- 2.3.1 Examples of Reversibility -- 2.3.2 Irreversible Trajectories in Stokes Flow -- 2.4 Minimum Energy Dissipation Theorem -- 2.4.1 Statement -- 2.4.2 An Application of the Minimum Energy Dissipation Theorem -- 2.5 Limits of the Stokes Approximation -- 2.5.1 Example of a System Where the Stokes Approximation Does Not Work -- Other Linear Flow Equations -- 2.5.2 Departures from Reversibility Caused by Inertia -- 2.5.3 Accelerating Fluid Example -- 2.6 Conclusions -- References -- 3 Mesoscopic Approach to Nematic Fluids -- 3.1 Introduction to Nematic Fluids -- 3.2 Nematic Order Parameters -- 3.3 Landau-de Gennes Free Energy Approach -- 3.3.1 Landau Theory of Nematic Phase Transition -- 3.3.2 Elastic Free Energy -- 3.3.3 Surface Anchoring -- 3.3.4 Electric Field Effects -- 3.3.5 Magnetic Field Effects -- 3.4 Topological Defects -- 3.4.1 Umbilic Defects -- 3.4.2 Basics of Topological Theory of Defects -- 3.5 Nematodynamics -- 3.5.1 Ericksen Stress Tensor -- 3.5.2 Ericksen-Leslie-Parodi Approach.

3.5.3 Beris-Edwards Model -- 3.5.4 Qian-Sheng Model -- 3.5.5 Towards Active Nematics -- 3.6 Nematic Microfluidics -- 3.6.1 Nematic Flows in Channels -- 3.6.2 Nematic Microfluidic Junctions -- 3.6.3 Colloidal Particles in Nematic Microfluidic Environment -- 3.7 Nematic Colloids -- 3.7.1 Single Spherical Particle -- 3.7.2 Interparticle Interactions -- 3.7.3 Assembly and Self-assembly of Colloidal Structures -- 3.7.4 Complex-Shaped and Topological Colloids -- 3.8 Conclusions -- References -- 4 Amphiphilic Janus Particles at Interfaces -- Acronyms -- 4.1 Introduction -- 4.2 Short History of Asymmetric Janus Particles -- 4.3 General Synthetic Routes -- 4.3.1 Masking and Asymmetric Modification -- 4.3.2 Seeded Emulsion Polymerisation and Phase Separation -- 4.3.3 Microfluidic and Capillary Electro-Jetting Methods -- 4.3.4 Polymer Co-precipitation and Phase Separation -- 4.4 Tuning the Surface Polarity in JPs -- 4.5 Interfacial Activity and Adsorption at Interfaces -- 4.5.1 Contact Angle and Interfacial Adsorption Energies of HPs vs. JPs -- 4.5.2 Inter-Particle Interaction at Interfaces vs. Lowering the Interfacial Tension -- 4.5.3 Activation and Adsorption Energies of JPs Spontaneously Adsorbing at Interfaces -- 4.6 Pickering Emulsions: Arrested JPs at Interfaces -- 4.7 Self-Assembly of Janus Particles -- 4.8 JP-Based Nanomotors -- 4.9 Conclusions -- References -- 5 Upscaling Flow and Transport Processes -- 5.1 Introduction -- 5.2 Flow Through Porous and Heterogeneous Media -- 5.2.1 Darcy's Law -- 5.2.2 Extensions of Darcy's Law -- 5.2.3 Heterogeneous Media -- 5.3 Macroscopic Transport Models -- 5.3.1 Fickian Dispersion -- 5.3.2 Anomalous Dispersion -- Continuous Time Random Walks -- Multi-Rate Mass Transfer -- 5.3.3 Mixing and Chemical Reactions -- Mixing, Diffusion and Dispersion -- Chemical Reactions -- 5.4 Multiphase and Surface Processes.

5.4.1 Mass and Heat Transfer -- From Surface Processes to Averaged Reaction Rates -- 5.5 Conclusions -- Appendix A: Homogenisation and Two-Scale Expansions -- Appendix B: Volume/Ensemble Averaging -- References -- 6 Recent Developments in Particle Tracking Diagnosticsfor Turbulence Research -- 6.1 Introduction -- 6.2 A Model-Free Calibration Method -- 6.2.1 Principle -- 6.2.2 Practical Implementation -- 6.2.3 Results: Comparison with Tsai Model -- 6.2.4 Discussion -- 6.3 Particle Tracking Algorithms -- 6.3.1 Shadow Particle Tracking Velocimetry -- Experimental Setup -- The Trajectory Stereo-Matching Approach -- Flow Measurements -- 6.3.2 Improved Four-Frame Best Estimate -- 6.4 Noise Reduction in Post-Processing Statistical Analysis -- 6.4.1 Lagrangian Auto-Correlation Functions -- Results -- Discussion -- 6.4.2 Eulerian Structure Functions -- Method -- Results -- Discussion -- 6.5 Conclusions -- References -- 7 Numerical Simulations of Active Brownian Particles -- 7.1 Introduction -- 7.2 Passive Brownian Motion -- 7.3 Active Particles -- 7.3.1 Active Brownian Motion -- 7.3.2 Run-and-Tumble Motion -- 7.3.3 Chiral Active Brownian Motion -- 7.3.4 Gaussian Noise Reorientation Model -- 7.4 More Complex Models -- 7.4.1 Non-Spherical Particles -- 7.4.2 External Fields -- 7.4.3 Interacting Particles -- 7.4.4 Multiplicative Noise -- 7.5 Numerical Examples -- 7.5.1 Living Crystals -- 7.5.2 Colloids with Short-Range Aligning Interaction -- 7.6 Conclusions -- References -- 8 Active Fluids Within the Unified Coloured Noise Approximation -- 8.1 Introduction -- 8.1.1 The Genesis of the UCNA Model of Active Particles -- 8.2 The Unified Coloured Noise Approximation (UCNA) -- 8.2.1 Kinetic Approach -- 8.2.2 Stationary Solution in the Absence of Current -- 8.2.3 Fox Approximation -- 8.2.4 Entropy Production in UCNA -- 8.2.5 H-Theorem.

8.3 Born-Green-Yvon Hierarchy in the Steady State -- 8.4 Active Pressure -- 8.5 Velocity Correlations -- 8.6 Simple Applications -- 8.6.1 Active Elastic Dumbbells -- 8.6.2 Pressure of N Noninteracting Active Particles Surrounded by Harshly Repulsive Walls -- 8.7 Active Particles in a Time-Dependent Potential -- 8.7.1 Effective Potential -- 8.7.2 Dynamical UCNA and Particle Density Profile -- 8.7.3 Average Drag Force -- 8.8 Conclusions -- Appendix 1: Entropy Production and Heat Flux in the GCN -- Appendix 2: Absence of Detailed Balance Condition in the GCN -- References -- 9 Quadrature-Based Lattice Boltzmann Models for RarefiedGas Flow -- 9.1 Introduction -- 9.2 Generalities -- 9.3 One-Dimensional Quadrature-Based LB Models -- 9.3.1 Full-Range Gauss-Hermite Quadrature -- 9.3.2 Half-Range Gauss-Hermite Quadrature -- 9.4 LB Models in the Three-Dimensional Momentum Space -- 9.4.1 Reduced Distributions -- 9.4.2 Mixed Quadrature LB Models with Reduced Distribution Functions -- 9.4.3 The Lattice Boltzmann Equation -- 9.4.4 Non-Dimensionalisation Procedure -- 9.5 Simulation Results -- 9.5.1 Couette Flow Between Parallel Plates -- 9.5.2 Force-Driven Poiseuille Flow Between Parallel Plates -- 9.6 Conclusions -- Appendix: Numerical Scheme -- References -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.