Make Life Visible.

By: Toyama, YoshiakiContributor(s): Miyawaki, Atsushi | Nakamura, Masaya | Jinzaki, MasahiroMaterial type: TextTextPublisher: Singapore : Springer Singapore Pte. Limited, 2019Copyright date: �2020Edition: 1st edDescription: 1 online resource (285 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9789811379086Genre/Form: Electronic books.Additional physical formats: Print version:: Make Life VisibleLOC classification: RC321-580Online resources: Click to View
Contents:
Intro -- Preface -- Contents -- Part I: Visualizing and Controlling Molecules for Life -- Chapter 1: Photoacoustic Tomography: Deep Tissue Imaging by Ultrasonically Beating Optical Diffusion -- Chapter 2: Regulatory Mechanism of Neural Progenitor Cells Revealed by Optical Manipulation of Gene Expressions -- References -- Chapter 3: Eavesdropping on Biological Processes with Multi-dimensional Molecular Imaging -- 3.1 Intravital Imaging -- 3.2 Volumetric Cardiac Imaging in Embryonic Zebrafish -- 3.2.1 Zebrafish As a Model System for Cardiovascular Research -- 3.2.2 Cardiac Development: Symbiosis of Function and Form -- 3.2.3 Cardiac Imaging Is a 4-Dimensional Challenge -- 3.2.4 Principles of Cardiac Gated Imaging in Zebrafish -- 3.2.4.1 Prospective Gating -- 3.2.4.2 Retrospective Gating -- 3.2.4.3 Macroscopic Phase Stamping -- 3.3 Large Scale In Vivo Brain Imaging with Two-Photon Light-Sheet Microscopy -- 3.3.1 Brain Activity Monitoring in Behaving Zebrafish -- 3.3.2 Principles and Successes of Light-Sheet Microscopy for Zebrafish Brain Imaging -- 3.4 Conclusion -- References -- Chapter 4: Apical Cytoskeletons Help Define the Barrier Functions of Epithelial Cell Sheets in Biological Systems -- 4.1 Introduction -- 4.2 The Apical Cytoskeletons in General Epithelial Cells -- 4.3 The Apical Cytoskeletons in Multiciliated Cells, a Possible Extreme Example of a "TJ-Apical Complex" with a Clear Function -- 4.4 Perspective -- References -- Chapter 5: Neural Circuit Dynamics of Brain States -- References -- Online Resources -- Chapter 6: Optogenetic Reconstitution: Light-Induced Assembly of Protein Complexes and Simultaneous Visualization of Their Intracellular Functions -- 6.1 Introduction -- 6.2 Light-Induced Heterodimerization Tools -- 6.3 Visualization Tools Compatible with Optogenetic Manipulation.
6.4 Light-Induced Assembly/Reconstitution of Force-Generating Complexes During Mitosis -- 6.5 Perspectives -- References -- Chapter 7: 19F MRI Probes with Tunable Chemical Switches -- 7.1 Magnetic Resonance Imaging -- 7.2 Perfluorocarbon Encapsulated in Silica Nanoparticle (FLAME) -- 7.3 Paramagnetic Relaxation Enhancement (PRE) Effect -- 7.4 Gadolinium Based-19F MRI Nanoprobe for Monitoring Reducing Environment -- References -- Chapter 8: Circuit-Dependent Striatal PKA and ERK Signaling Underlying Action Selection -- References -- Chapter 9: Making Life Visible: Fluorescent Indicators to Probe Membrane Potential -- 9.1 Introduction -- 9.2 Rational Design of VoltageFluor Dyes -- 9.3 Voltage Imaging with Red-Shifted Dyes -- 9.4 Far-Red Voltage Imaging for High Sensitivity -- 9.5 Accessing Two-Photon Infrared Excitation for Imaging in Thick Brain Tissue -- 9.6 Targeting VoltageFluor Dyes to Specific Cells -- 9.7 Conclusion/Summary -- References -- Chapter 10: Molecular Dynamics Revealed by Single-Molecule FRET Measurement -- 10.1 Single-Molecule Fluorescence Imaging -- 10.2 Molecular Dynamics of Proteins Measured by smFRET -- 10.3 Advances in smFRET Methods -- 10.4 Conclusion -- References -- Chapter 11: Comprehensive Approaches Using Luminescence to Studies of Cellular Functions -- 11.1 &lt -- Fluoppi&gt -- -- 11.2 &lt -- Fucci&gt -- -- 11.3 &lt -- GEPRA&gt -- -- 11.4 &lt -- UnaG&gt -- -- References -- Part II: Imaging Disease Mechanisms -- Chapter 12: Making Chronic Pain Visible: Risks, Mechanisms, Consequences -- 12.1 Summary Abstract for Presentation Delivered at Uehara Meeting, June 2017 -- Chapter 13: Visualization of the Pathological Changes After Spinal Cord Injury (-From Bench to Bed Side-) -- 13.1 Diffusion Tensor Tractography -- 13.1.1 Basic Research -- 13.1.2 Clinical Significance of DTT -- 13.2 Myelin Map -- 13.2.1 Basic Research.
13.2.2 Clinical Significance of Myelin Map -- 13.3 Resting-State Functional MRI -- References -- Chapter 14: Multimodal Label-Free Imaging to Assess Compositional and Morphological Changes in Cells During Immune Activation -- References -- Chapter 15: Investigating In Vivo Myocardial and Coronary Molecular Pathophysiology in Mice with X-Ray Radiation Imaging Approaches -- 15.1 Translating Imaging of Cardiac Function to Small Animals -- 15.2 The Importance of the Microvessels in Sustaining Cardiac Function -- 15.2.1 The Challenges Associated with Investigating Coronary Microvascular Function -- 15.2.2 Protocols for Assessment of Coronary Endothelial Function -- 15.3 Progress in Vascular Imaging of Small Animals with Lab Systems -- 15.4 Application of In Vivo SAXS to the Study of Myocardial Function in Mice -- References -- Chapter 16: Visualizing the Immune Response to Infections -- Chapter 17: Imaging Sleep and Wakefulness -- 17.1 Introduction: Behavioral Definition of Sleep -- 17.2 Oscillations in Sleep -- 17.3 Electrophysiological Insights into the Sleeping Brain -- 17.4 Imaging Techniques Show Novel Aspects of Sleep -- 17.5 Future Directions -- References -- Chapter 18: Abnormal Local Translation in Dendrites Impairs Cognitive Functions in Neuropsychiatric Disorders -- 18.1 Introduction -- 18.2 Results -- 18.2.1 TDP-43 Forms Co-Aggregates with DISC1 in Neurons -- 18.2.2 Role of DISC1 in Local Translation in Dendrites -- 18.2.3 TDP-43-DISC1 Co-Aggregation Inhibits Local Translation in Dendrites -- 18.2.4 DISC1-Dependent Behavioral Impairment and Rescue in TDP-220C Mice -- 18.3 Discussion -- References -- Chapter 19: Imaging Synapse Formation and Remodeling In Vitro and In Vivo -- 19.1 Synapse, Neuron, and Neural Network -- 19.2 In Vitro Imaging of Dynamic Synapses -- 19.3 In Vivo Imaging of Dynamic Synapses.
19.4 In Vivo Imaging of Neocortical Circuits in Mouse Models of Developmental Disorders -- 19.5 Perspectives -- References -- Part III: Imaging-Based Diagnosis and Therapy -- Chapter 20: How MRI Makes the Brain Visible -- 20.1 Progress of Imaging to Investigate the Anatomy of the Brain -- 20.2 Imaging Brain Function with Functional MRI (fMRI) -- 20.3 Imaging Brain Tissue Microstructure with Diffusion MRI (dMRI) -- 20.4 Future of MRI -- References -- Chapter 21: Application of Imaging Technology to Humans -- 21.1 Introduction -- 21.2 MPM Technique Enables to Visualize the Histological Features of Fresh, Unstained Human Colorectal Mucosa and Can Be Used for Histopathological Diagnoses -- 21.3 Classification by Numerical Parameters Enables to Distinguish NL-MPM Images to Normal and Cancerous Tissues Quantitatively -- 21.4 Conclusion -- References -- Chapter 22: Theranostic Near-Infrared Photoimmunotherapy -- 22.1 Introduction -- 22.2 NIR-PIT Can Selectively Kill Various Cancer Cells -- 22.3 NIR-PIT Rapidly Enhances Nano-Drug Delivery -- 22.4 NIR-PIT Initiates Anti-Tumor Host Immunity and Promotes Rapid Healing -- 22.5 Targeting Systemic Metastases -- 22.6 Perspective -- References -- Chapter 23: Integrated Imaging on Fatigue and Chronic Fatigue -- 23.1 Introduction -- 23.2 Integrated Imaging Studies -- 23.3 PET Studies -- 23.4 MRI Morphometry -- 23.5 fMRI Study -- 23.6 MEG Study -- References -- Chapter 24: Development of Novel Fluorogenic Probes for Realizing Rapid Intraoperative Multi-color Imaging of Tiny Tumors -- 24.1 Rational Design of Organic Fluorogenic Probes Based on Unique Spirocyclization of Rhodamines by the Intramolecular Hydroxymethyl Group -- 24.2 Development of Novel Fluorogenic Green Probes for Biological and Medical Purposes, Especially for Intraoperative Rapid Tumor Imaging.
24.3 Development of Novel Fluorogenic Scaffold for Detecting Protease Activity in Longer Wavelength by Optimizing the Spirocyclization Properties: Novel Strategy for Fluorescence-Assisted Surgery with Multicolor Protease Imaging (Iwatate et al. 2016 -- 24.4 Conclusion -- References -- Chapter 25: Coronary Heart Disease Diagnosis by FFRCT: Engineering Triumphs and Value Chain Analysis -- 25.1 Coronary Heart Disease Pathophysiology -- 25.2 Invasive Coronary Angiography Is Inefficient -- 25.3 Fractional Flow Reserve -- 25.4 CT Angiography -- 25.5 Comparing Costs -- 25.6 Economic Considerations for Translation to Routine Care -- 25.7 Conclusion -- References -- Chapter 26: Live Imaging of the Skin Immune Responses -- 26.1 Introduction -- 26.2 The Skin and Its Key Immune Cells -- 26.2.1 Dendritic Cells -- 26.2.2 Neutrophils -- 26.2.3 Macrophages -- 26.2.4 Mast Cells -- 26.2.5 T Cells -- 26.3 Tools for In Vivo Imaging -- 26.3.1 Microscopy -- 26.3.2 Animal Systems and Fluorescent-Cell Labelling Techniques -- 26.4 In vivo Imaging of Skin Immune Responses -- 26.4.1 Sterile Injury -- 26.4.2 Contact Hypersensitivity -- 26.4.3 Infection -- 26.4.4 Cancer -- 26.5 Concluding Remarks - Looking Ahead to the Future -- References -- Chapter 27: Development of Upright CT and Its Initial Evaluation: Effect of Gravity on Human Body and Potential Clinical Application -- 27.1 X-Ray Imaging of the Human Body -- 27.2 Cross-Sectional Imaging of Human Body -- 27.3 Development of Upright CT -- 27.4 Physical Properties and Clinical Data Analysis -- References -- Chapter 28: The Future of Precision Health &amp -- Integrated Diagnostics -- Reference -- Chapter 29: Imaging and Therapy Against Hypoxic Tumors with 64Cu-ATSM -- 29.1 Radiolabeled Cu-ATSM as a Hypoxia Imaging Agent for PET -- 29.2 64Cu-ATSM as a Theranostic Agent -- 29.3 64Cu-ATSM Theranostics for Cancer Stem Cells.
29.4 Biodistribution and Dosimetry of 64Cu-ATSM.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Preface -- Contents -- Part I: Visualizing and Controlling Molecules for Life -- Chapter 1: Photoacoustic Tomography: Deep Tissue Imaging by Ultrasonically Beating Optical Diffusion -- Chapter 2: Regulatory Mechanism of Neural Progenitor Cells Revealed by Optical Manipulation of Gene Expressions -- References -- Chapter 3: Eavesdropping on Biological Processes with Multi-dimensional Molecular Imaging -- 3.1 Intravital Imaging -- 3.2 Volumetric Cardiac Imaging in Embryonic Zebrafish -- 3.2.1 Zebrafish As a Model System for Cardiovascular Research -- 3.2.2 Cardiac Development: Symbiosis of Function and Form -- 3.2.3 Cardiac Imaging Is a 4-Dimensional Challenge -- 3.2.4 Principles of Cardiac Gated Imaging in Zebrafish -- 3.2.4.1 Prospective Gating -- 3.2.4.2 Retrospective Gating -- 3.2.4.3 Macroscopic Phase Stamping -- 3.3 Large Scale In Vivo Brain Imaging with Two-Photon Light-Sheet Microscopy -- 3.3.1 Brain Activity Monitoring in Behaving Zebrafish -- 3.3.2 Principles and Successes of Light-Sheet Microscopy for Zebrafish Brain Imaging -- 3.4 Conclusion -- References -- Chapter 4: Apical Cytoskeletons Help Define the Barrier Functions of Epithelial Cell Sheets in Biological Systems -- 4.1 Introduction -- 4.2 The Apical Cytoskeletons in General Epithelial Cells -- 4.3 The Apical Cytoskeletons in Multiciliated Cells, a Possible Extreme Example of a "TJ-Apical Complex" with a Clear Function -- 4.4 Perspective -- References -- Chapter 5: Neural Circuit Dynamics of Brain States -- References -- Online Resources -- Chapter 6: Optogenetic Reconstitution: Light-Induced Assembly of Protein Complexes and Simultaneous Visualization of Their Intracellular Functions -- 6.1 Introduction -- 6.2 Light-Induced Heterodimerization Tools -- 6.3 Visualization Tools Compatible with Optogenetic Manipulation.

6.4 Light-Induced Assembly/Reconstitution of Force-Generating Complexes During Mitosis -- 6.5 Perspectives -- References -- Chapter 7: 19F MRI Probes with Tunable Chemical Switches -- 7.1 Magnetic Resonance Imaging -- 7.2 Perfluorocarbon Encapsulated in Silica Nanoparticle (FLAME) -- 7.3 Paramagnetic Relaxation Enhancement (PRE) Effect -- 7.4 Gadolinium Based-19F MRI Nanoprobe for Monitoring Reducing Environment -- References -- Chapter 8: Circuit-Dependent Striatal PKA and ERK Signaling Underlying Action Selection -- References -- Chapter 9: Making Life Visible: Fluorescent Indicators to Probe Membrane Potential -- 9.1 Introduction -- 9.2 Rational Design of VoltageFluor Dyes -- 9.3 Voltage Imaging with Red-Shifted Dyes -- 9.4 Far-Red Voltage Imaging for High Sensitivity -- 9.5 Accessing Two-Photon Infrared Excitation for Imaging in Thick Brain Tissue -- 9.6 Targeting VoltageFluor Dyes to Specific Cells -- 9.7 Conclusion/Summary -- References -- Chapter 10: Molecular Dynamics Revealed by Single-Molecule FRET Measurement -- 10.1 Single-Molecule Fluorescence Imaging -- 10.2 Molecular Dynamics of Proteins Measured by smFRET -- 10.3 Advances in smFRET Methods -- 10.4 Conclusion -- References -- Chapter 11: Comprehensive Approaches Using Luminescence to Studies of Cellular Functions -- 11.1 &lt -- Fluoppi&gt -- -- 11.2 &lt -- Fucci&gt -- -- 11.3 &lt -- GEPRA&gt -- -- 11.4 &lt -- UnaG&gt -- -- References -- Part II: Imaging Disease Mechanisms -- Chapter 12: Making Chronic Pain Visible: Risks, Mechanisms, Consequences -- 12.1 Summary Abstract for Presentation Delivered at Uehara Meeting, June 2017 -- Chapter 13: Visualization of the Pathological Changes After Spinal Cord Injury (-From Bench to Bed Side-) -- 13.1 Diffusion Tensor Tractography -- 13.1.1 Basic Research -- 13.1.2 Clinical Significance of DTT -- 13.2 Myelin Map -- 13.2.1 Basic Research.

13.2.2 Clinical Significance of Myelin Map -- 13.3 Resting-State Functional MRI -- References -- Chapter 14: Multimodal Label-Free Imaging to Assess Compositional and Morphological Changes in Cells During Immune Activation -- References -- Chapter 15: Investigating In Vivo Myocardial and Coronary Molecular Pathophysiology in Mice with X-Ray Radiation Imaging Approaches -- 15.1 Translating Imaging of Cardiac Function to Small Animals -- 15.2 The Importance of the Microvessels in Sustaining Cardiac Function -- 15.2.1 The Challenges Associated with Investigating Coronary Microvascular Function -- 15.2.2 Protocols for Assessment of Coronary Endothelial Function -- 15.3 Progress in Vascular Imaging of Small Animals with Lab Systems -- 15.4 Application of In Vivo SAXS to the Study of Myocardial Function in Mice -- References -- Chapter 16: Visualizing the Immune Response to Infections -- Chapter 17: Imaging Sleep and Wakefulness -- 17.1 Introduction: Behavioral Definition of Sleep -- 17.2 Oscillations in Sleep -- 17.3 Electrophysiological Insights into the Sleeping Brain -- 17.4 Imaging Techniques Show Novel Aspects of Sleep -- 17.5 Future Directions -- References -- Chapter 18: Abnormal Local Translation in Dendrites Impairs Cognitive Functions in Neuropsychiatric Disorders -- 18.1 Introduction -- 18.2 Results -- 18.2.1 TDP-43 Forms Co-Aggregates with DISC1 in Neurons -- 18.2.2 Role of DISC1 in Local Translation in Dendrites -- 18.2.3 TDP-43-DISC1 Co-Aggregation Inhibits Local Translation in Dendrites -- 18.2.4 DISC1-Dependent Behavioral Impairment and Rescue in TDP-220C Mice -- 18.3 Discussion -- References -- Chapter 19: Imaging Synapse Formation and Remodeling In Vitro and In Vivo -- 19.1 Synapse, Neuron, and Neural Network -- 19.2 In Vitro Imaging of Dynamic Synapses -- 19.3 In Vivo Imaging of Dynamic Synapses.

19.4 In Vivo Imaging of Neocortical Circuits in Mouse Models of Developmental Disorders -- 19.5 Perspectives -- References -- Part III: Imaging-Based Diagnosis and Therapy -- Chapter 20: How MRI Makes the Brain Visible -- 20.1 Progress of Imaging to Investigate the Anatomy of the Brain -- 20.2 Imaging Brain Function with Functional MRI (fMRI) -- 20.3 Imaging Brain Tissue Microstructure with Diffusion MRI (dMRI) -- 20.4 Future of MRI -- References -- Chapter 21: Application of Imaging Technology to Humans -- 21.1 Introduction -- 21.2 MPM Technique Enables to Visualize the Histological Features of Fresh, Unstained Human Colorectal Mucosa and Can Be Used for Histopathological Diagnoses -- 21.3 Classification by Numerical Parameters Enables to Distinguish NL-MPM Images to Normal and Cancerous Tissues Quantitatively -- 21.4 Conclusion -- References -- Chapter 22: Theranostic Near-Infrared Photoimmunotherapy -- 22.1 Introduction -- 22.2 NIR-PIT Can Selectively Kill Various Cancer Cells -- 22.3 NIR-PIT Rapidly Enhances Nano-Drug Delivery -- 22.4 NIR-PIT Initiates Anti-Tumor Host Immunity and Promotes Rapid Healing -- 22.5 Targeting Systemic Metastases -- 22.6 Perspective -- References -- Chapter 23: Integrated Imaging on Fatigue and Chronic Fatigue -- 23.1 Introduction -- 23.2 Integrated Imaging Studies -- 23.3 PET Studies -- 23.4 MRI Morphometry -- 23.5 fMRI Study -- 23.6 MEG Study -- References -- Chapter 24: Development of Novel Fluorogenic Probes for Realizing Rapid Intraoperative Multi-color Imaging of Tiny Tumors -- 24.1 Rational Design of Organic Fluorogenic Probes Based on Unique Spirocyclization of Rhodamines by the Intramolecular Hydroxymethyl Group -- 24.2 Development of Novel Fluorogenic Green Probes for Biological and Medical Purposes, Especially for Intraoperative Rapid Tumor Imaging.

24.3 Development of Novel Fluorogenic Scaffold for Detecting Protease Activity in Longer Wavelength by Optimizing the Spirocyclization Properties: Novel Strategy for Fluorescence-Assisted Surgery with Multicolor Protease Imaging (Iwatate et al. 2016 -- 24.4 Conclusion -- References -- Chapter 25: Coronary Heart Disease Diagnosis by FFRCT: Engineering Triumphs and Value Chain Analysis -- 25.1 Coronary Heart Disease Pathophysiology -- 25.2 Invasive Coronary Angiography Is Inefficient -- 25.3 Fractional Flow Reserve -- 25.4 CT Angiography -- 25.5 Comparing Costs -- 25.6 Economic Considerations for Translation to Routine Care -- 25.7 Conclusion -- References -- Chapter 26: Live Imaging of the Skin Immune Responses -- 26.1 Introduction -- 26.2 The Skin and Its Key Immune Cells -- 26.2.1 Dendritic Cells -- 26.2.2 Neutrophils -- 26.2.3 Macrophages -- 26.2.4 Mast Cells -- 26.2.5 T Cells -- 26.3 Tools for In Vivo Imaging -- 26.3.1 Microscopy -- 26.3.2 Animal Systems and Fluorescent-Cell Labelling Techniques -- 26.4 In vivo Imaging of Skin Immune Responses -- 26.4.1 Sterile Injury -- 26.4.2 Contact Hypersensitivity -- 26.4.3 Infection -- 26.4.4 Cancer -- 26.5 Concluding Remarks - Looking Ahead to the Future -- References -- Chapter 27: Development of Upright CT and Its Initial Evaluation: Effect of Gravity on Human Body and Potential Clinical Application -- 27.1 X-Ray Imaging of the Human Body -- 27.2 Cross-Sectional Imaging of Human Body -- 27.3 Development of Upright CT -- 27.4 Physical Properties and Clinical Data Analysis -- References -- Chapter 28: The Future of Precision Health &amp -- Integrated Diagnostics -- Reference -- Chapter 29: Imaging and Therapy Against Hypoxic Tumors with 64Cu-ATSM -- 29.1 Radiolabeled Cu-ATSM as a Hypoxia Imaging Agent for PET -- 29.2 64Cu-ATSM as a Theranostic Agent -- 29.3 64Cu-ATSM Theranostics for Cancer Stem Cells.

29.4 Biodistribution and Dosimetry of 64Cu-ATSM.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.