TY - BOOK AU - Goodwin,A.R.H. AU - Sengers,J.V. AU - Peters,Cor J. ED - Royal Society of Chemistry (Great Britain) ED - International Union of Pure and Applied Chemistry. ED - International Association of Chemical Thermodynamics. ED - ProQuest (Firm) TI - Applied thermodynamics of fluids AV - QC145.4.T5 A67 2010 PY - 2010/// CY - Cambridge PB - RSC Pub. KW - Fluids KW - Thermal properties KW - Electronic books N1 - Includes bibliographical references and index; Machine generated contents note; ch. 1; Introduction; J. Peters --; References --; ch. 2; Fundamental Considerations; Cor J. Peters --; 2.1; Introduction --; 2.2; Basic Thermodynamics --; 2.2.1; Homogeneous Functions --; 2.2.2; Thermodynamic Properties from Differentiation of Fundamental Equations --; 2.3; Deviation Functions --; 2.3.1; Residual Functions --; 2.3.2; Evaluation of Residual Functions --; 2.4; Mixing and Departure Functions --; 2.4.1; Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables --; 2.4.2; Departure Functions with Temperature, Pressure and Composition as the Independent Variables --; 2.5; Mixing and Excess Functions --; 2.6; Partial Molar Properties --; 2.7; Fugacity and Fugacity Coefficients --; 2.8; Activity Coefficients --; 2.9; The Phase Rule --; 2.10; Equilibrium Conditions --; 2.10.1; Phase Equilibria --; 2.10.2; Chemical Equilibria --; 2.11; Stability and the Critical State --; 2.11.1; Densities and Fields --; 2.11.2; Stability; 2.11.3; Critical State --; References --; ch. 3; The Virial Equation of State; J. P. Martin Trusler --; 3.1; Introduction --; 3.1.1; Temperature Dependence of the Virial Coefficients --; 3.1.2; Composition Dependence of the Virial Coefficients --; 3.1.3; Convergence of the Virial Series --; 3.1.4; The Pressure Series --; 3.2; Theoretical Background --; 3.2.1; Virial Coefficients of Hard-Core-Square-Well Molecules --; 3.3; Thermodynamic Properties of Gases --; 3.3.1; Perfect-gas and Residual Properties --; 3.3.2; Helmholtz Energy and Gibbs Energy --; 3.3.3; Perfect-Gas Properties --; 3.3.4; Residual Properties --; 3.4; Estimation of Second and Third Virial Coefficients --; 3.4.1; Application of Intermolecular Potential-energy Functions --; 3.4.2; Corresponding-states Methods --; References --; ch. 4; Cubic and Generalized van der Waals Equations of State; Ioannis G. Economou --; 4.1; Introduction --; 4.2; Cubic Equation of State Formulation --; 4.2.1; The van der Waals Equation of State (1873) --; 4.2.2; The Redlich and Kwong Equation of State (1949); 4.2.3; The Soave, Redlich and Kwong Equation of State (1972) --; 4.2.4; The Peng and Robinson Equation of State (1976) --; 4.2.5; The Patel and Teja (PT) Equation of State (1982) --; 4.2.6; The α Parameter --; 4.2.7; Volume Translation --; 4.2.8; The Elliott, Suresh and Donohue (ESD) Equation of State (1990) --; 4.2.9; Higher-Order Equations of State Rooted to the Cubic Equations of State --; 4.2.10; Extension of Cubic Equations of State to Mixtures --; 4.3; Applications --; 4.3.1; Pure Components --; 4.3.2; Oil and Gas Industry -- Hydrocarbons and Petroleum Fractions --; 4.3.3; Chemical Industry -- Polar and Hydrogen Bonding Fluids --; 4.3.4; Polymers --; 4.3.5; Transport Properties --; 4.4; Conclusions --; References --; ch. 5; Mixing and Combining Rules; Stanley I. Sandler --; 5.1; Introduction --; 5.2; The Virial Equation of State --; 5.3; Cubic Equations of State --; 5.3.1; Mixing Rules --; 5.3.2; Combining Rules --; 5.3.3; Non-Quadratic Mixing and Combining Rules --; 5.3.4; Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model; 5.4; Multi-Parameter Equations of State --; 5.4.1; Benedict, Webb, and Rubin Equation of State --; 5.4.2; Generalization with the Acentric Factor --; 5.4.3; Helmholtz-Function Equations of State --; 5.5; Mixing Rules for Hard Spheres and Association --; 5.5.1; Mixing and Combining Rules for SAFT --; 5.5.2; Cubic Plus Association Equation of State --; References --; ch. 6; The Corresponding-States Principle; James F. Ely --; 6.1; Introduction --; 6.2; Theoretical Considerations --; 6.3; Determination of Shape Factors --; 6.3.1; Other Reference Fluids --; 6.3.2; Exact Shape Factors --; 6.3.3; Shape Factors from Generalized Equations of State --; 6.4; Mixtures --; 6.4.1; van der Waals One-Fluid Theory --; 6.4.2; Mixture Corresponding-States Relations --; 6.5; Applications of Corresponding-States Theory --; 6.5.1; Extended Corresponding-States for Natural Gas Systems --; 6.5.2; Extended Lee-Kesler --; 6.5.3; Generalized Crossover Cubic Equation of State --; 6.6; Conclusions --; References --; ch. 7; Thermodynamics of Fluids at Meso and Nano Scales; Christopher E. Bertrand; 7.1; Introduction --; 7.2; Thermodynamic Approach to Meso-Heterogeneous Systems --; 7.2.1; Equilibrium Fluctuations --; 7.2.2; Local Helmholtz Energy --; 7.3; Applications of Meso-Thermodynamics --; 7.3.1; Van der Waals Theory of a Smooth Interface --; 7.3.2; Polymer Chain in a Dilute Solution --; 7.3.3; Building a Nanoparticle Through Self Assembly --; 7.3.4; Modulated Fluid Phases --; 7.4; Meso-Thermodynamics of Criticality --; 7.4.1; Critical Fluctuations --; 7.4.2; Scaling Relations --; 7.4.3; Near-Critical Interface --; 7.4.4; Divergence of Tolman's Length --; 7.5; Competition of Meso-Scales --; 7.5.1; Crossover to Tricriticality in Polymer Solutions --; 7.5.2; Tolman's Length in Polymer Solutions --; 7.5.3; Finite-size Scaling --; 7.6; Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation --; 7.6.1; Relaxation of Fluctuations --; 7.6.2; Critical Slowing Down --; 7.6.3; Homogeneous Nucleation --; 7.6.4; Spinodal Decomposition --; 7.7; Conclusion --; References --; ch. 8; SAFT Associating Fluids and Fluid Mixtures; Amparo Galindo; 8.1; Introduction --; 8.2; Statistical Mechanical Theories of Association and Wertheim's Theory --; 8.3; SAFT Equations of State --; 8.3.1; SAFT-HS and SAFT-HR --; 8.3.2; Soft-SAFT --; 8.3.3; SAFT-VR --; 8.3.4; PC-SAFT --; 8.3.5; Summary --; 8.4; Extensions of the SAFT Approach --; 8.4.1; Modelling the Critical Region --; 8.4.2; Polar Fluids --; 8.4.3; Ion-Containing Fluids --; 8.4.4; Modelling Inhomogeneous Fluids --; 8.4.5; Dense Phases: Liquid Crystals and Solids --; 8.5; Parameter Estimation: Towards more Predictive Approaches --; 8.5.1; Pure-component Parameter Estimation --; 8.5.2; Use of Quantum Mechanics in SAFT Equations of State --; 8.5.3; Unlike Binary Intermolecular Parameters --; 8.6; SAFT Group-Contribution Approaches --; 8.6.1; Homonuclear Group-Contribution Models in SAFT --; 8.6.2; Heteronuclear Group Contribution Models in SAFT --; 8.7; Concluding Remarks --; References --; ch. 9; Polydisperse Fluids; Dieter Browarzik --; 9.1; Introduction --; 9.2; Influence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution; 9.3; Approaches to Polydispersity --; 9.3.1; The Pseudo-component Method --; 9.3.2; Continuous Thermodynamics --; 9.4; Application to Real Systems --; 9.4.1; Polymer Systems --; 9.4.2; Petroleum Fluids, Asphaltenes, Waxes and Other Applications --; 9.5; Conclusions --; References --; ch. 10; Thermodynamic Behaviour of Fluids near Critical Points; Mikhail A. Anisimov --; 10.1; Introduction --; 10.2; General Theory of Critical Behaviour --; 10.2.1; Scaling Fields, Critical Exponents, and Critical Amplitudes --; 10.2.2; Parametric Equation of State --; 10.3; One-Component Fluids --; 10.3.1; Simple Scaling --; 10.3.2; Revised Scaling --; 10.3.3; Complete Scaling --; 10.3.4; Vapour-Liquid Equilibrium --; 10.3.5; Symmetric Corrections to Scaling --; 10.4; Binary Fluid Mixtures --; 10.4.1; Isomorphic Critical Behaviour of Mixtures --; 10.4.2; Incompressible Liquid Mixtures --; 10.4.3; Weakly Compressible Liquid Mixtures --; 10.4.4; Compressible Fluid Mixtures --; 10.4.5; Dilute Solutions --; 10.5; Crossover Critical Behaviour --; 10.5.1; Crossover from Ising-like to Mean-Field Critical Behaviour; 10.5.2; Effective Critical Exponents --; 10.5.3; Global Crossover Behaviour of Fluids --; 10.6; Discussion --; Acknowledgements --; References --; ch. 11; Phase Behaviour of Ionic Liquid Systems; Cor J. Peters --; 11.1; Introduction --; 11.2; Phase Behaviour of Binary Ionic Liquid Systems --; 11.2.1; Phase Behaviour of (Ionic Liquid + Gas Mixtures) --; 11.2.2; Phase Behaviour of (Ionic Liquid + Water) --; 11.2.3; Phase Behaviour of (Ionic Liquid + Organic) --; 11.3; Phase Behaviour of Ternary Ionic Liquid Systems --; 11.3.1; Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic) --; 11.3.2; Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic) --; 11.3.3; Phase Behaviour of (Ionic Liquid + Water + Alcohol) --; 11.3.4; Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures --; 11.4; Modeling of the Phase Behaviour of Ionic Liquid Systems --; 11.4.1; Molecular Simulations --; 11.4.2; Excess Gibbs-energy Methods --; 11.4.3; Equation of State Modeling --; 11.4.4; Quantum Chemical Methods --; References --; ch. 12; Multi-parameter Equations of State for Pure Fluids and Mixtures; Roland Span; 12.1; Introduction --; 12.2; The Development of a Thermodynamic Property Formulation --; 12.3; Fitting an Equation of State to Experimental Data --; 12.3.1; Recent Nonlinear Fitting Methods --; 12.4; Pressure-Explicit Equations of State --; 12.4.1; Cubic Equations --; 12.4.2; The Benedict-Webb-Rubin Equation of State --; 12.4.3; The Bender Equation of State --; 12.4.4; The Jacobsen-Stewart Equation of State --; 12.4.5; Thermodynamic Properties from Pressure-Explicit Equations of State --; 12.5; Fundamental Equations --; 12.5.1; The Equation of Keenan, Keyes, Hill, and Moore --; 12.5.2; The Equations of Haar, Gallagher, and Kell --; 12.5.3; The Equation of Schmidt and Wagner --; 12.5.4; Reference Equations of Wagner --; 12.5.5; Technical Equations of Span and of Lemmon --; 12.5.6; Recent Equations of State; Note continued--; 13.6; Concluding Remarks --; References --; ch. 14; Applied Non-Equilibrium Thermodynamics; Dick Bedeaux --; 14.1; Introduction --; 14.1.1; A Systematic Thermodynamic Theory for Transport --; 14.1.2; On the Validity of the Assumption of Local Equilibrium --; 14.1.3; Concluding remarks --; 14.2; Fluxes and Forces from the Second Law of Thermodynamics --; 14.2.1; Continuous phases --; 14.2.2; Maxwell-Stefan Equations --; 14.2.3; Discontinuous Systems --; 14.2.4; Concluding Remarks --; 14.3; Chemical Reactions --; 14.3.1; Thermal Diffusion in a Reacting System --; 14.3.2; Mesoscopic Description Along the Reaction Coordinate --; 14.3.3; Heterogeneous Catalysis --; 14.3.4; Concluding Remarks --; 14.4; The Path of Energy-Efficient Operation --; 14.4.1; An Optimisation Procedure --; 14.4.2; Optimal Heat Exchange --; 14.4.3; The Highway Hypothesis for a Chemical Reactor --; 14.4.4; Energy-Efficient Production of Hydrogen Gas --; 14.4; Conclusions --; References; Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries UR - https://ebookcentral.proquest.com/lib/bacm-ebooks/detail.action?docID=1185176 ER -