Applied thermodynamics of fluids [electronic resource] /
edited by A.R.H. Goodwin, J.V. Sengers, C.J. Peters.
- Cambridge : RSC Pub., c2010.
- xxiii, 509 p. : ill.
Includes bibliographical references and index.
Introduction / References -- Fundamental Considerations / Introduction -- Basic Thermodynamics -- Homogeneous Functions -- Thermodynamic Properties from Differentiation of Fundamental Equations -- Deviation Functions -- Residual Functions -- Evaluation of Residual Functions -- Mixing and Departure Functions -- Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables -- Departure Functions with Temperature, Pressure and Composition as the Independent Variables -- Mixing and Excess Functions -- Partial Molar Properties -- Fugacity and Fugacity Coefficients -- Activity Coefficients -- The Phase Rule -- Equilibrium Conditions -- Phase Equilibria -- Chemical Equilibria -- Stability and the Critical State -- Densities and Fields -- Stability. J. Peters -- Cor J. Peters -- Machine generated contents note: ch. 1 ch. 2 2.1. 2.2. 2.2.1. 2.2.2. 2.3. 2.3.1. 2.3.2. 2.4. 2.4.1. 2.4.2. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.10.1. 2.10.2. 2.11. 2.11.1. 2.11.2. Critical State -- References -- The Virial Equation of State / Introduction -- Temperature Dependence of the Virial Coefficients -- Composition Dependence of the Virial Coefficients -- Convergence of the Virial Series -- The Pressure Series -- Theoretical Background -- Virial Coefficients of Hard-Core-Square-Well Molecules -- Thermodynamic Properties of Gases -- Perfect-gas and Residual Properties -- Helmholtz Energy and Gibbs Energy -- Perfect-Gas Properties -- Residual Properties -- Estimation of Second and Third Virial Coefficients -- Application of Intermolecular Potential-energy Functions -- Corresponding-states Methods -- References -- Cubic and Generalized van der Waals Equations of State / Introduction -- Cubic Equation of State Formulation -- The van der Waals Equation of State (1873) -- The Redlich and Kwong Equation of State (1949). J. P. Martin Trusler -- Ioannis G. Economou -- 2.11.3. ch. 3 3.1. 3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.2. 3.2.1. 3.3. 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.4. 3.4.1. 3.4.2. ch. 4 4.1. 4.2. 4.2.1. 4.2.2. The Soave, Redlich and Kwong Equation of State (1972) -- The Peng and Robinson Equation of State (1976) -- The Patel and Teja (PT) Equation of State (1982) -- The α Parameter -- Volume Translation -- The Elliott, Suresh and Donohue (ESD) Equation of State (1990) -- Higher-Order Equations of State Rooted to the Cubic Equations of State -- Extension of Cubic Equations of State to Mixtures -- Applications -- Pure Components -- Oil and Gas Industry -- Hydrocarbons and Petroleum Fractions -- Chemical Industry -- Polar and Hydrogen Bonding Fluids -- Polymers -- Transport Properties -- Conclusions -- References -- Mixing and Combining Rules / Introduction -- The Virial Equation of State -- Cubic Equations of State -- Mixing Rules -- Combining Rules -- Non-Quadratic Mixing and Combining Rules -- Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model. Stanley I. Sandler -- 4.2.3. 4.2.4. 4.2.5. 4.2.6. 4.2.7. 4.2.8. 4.2.9. 4.2.10. 4.3. 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.4. ch. 5 5.1. 5.2. 5.3. 5.3.1. 5.3.2. 5.3.3. 5.3.4. Multi-Parameter Equations of State -- Benedict, Webb, and Rubin Equation of State -- Generalization with the Acentric Factor -- Helmholtz-Function Equations of State -- Mixing Rules for Hard Spheres and Association -- Mixing and Combining Rules for SAFT -- Cubic Plus Association Equation of State -- References -- The Corresponding-States Principle / Introduction -- Theoretical Considerations -- Determination of Shape Factors -- Other Reference Fluids -- Exact Shape Factors -- Shape Factors from Generalized Equations of State -- Mixtures -- van der Waals One-Fluid Theory -- Mixture Corresponding-States Relations -- Applications of Corresponding-States Theory -- Extended Corresponding-States for Natural Gas Systems -- Extended Lee-Kesler -- Generalized Crossover Cubic Equation of State -- Conclusions -- References -- Thermodynamics of Fluids at Meso and Nano Scales / James F. Ely -- Christopher E. Bertrand. 5.4. 5.4.1. 5.4.2. 5.4.3. 5.5. 5.5.1. 5.5.2. ch. 6 6.1. 6.2. 6.3. 6.3.1. 6.3.2. 6.3.3. 6.4. 6.4.1. 6.4.2. 6.5. 6.5.1. 6.5.2. 6.5.3. 6.6. ch. 7 Introduction -- Thermodynamic Approach to Meso-Heterogeneous Systems -- Equilibrium Fluctuations -- Local Helmholtz Energy -- Applications of Meso-Thermodynamics -- Van der Waals Theory of a Smooth Interface -- Polymer Chain in a Dilute Solution -- Building a Nanoparticle Through Self Assembly -- Modulated Fluid Phases -- Meso-Thermodynamics of Criticality -- Critical Fluctuations -- Scaling Relations -- Near-Critical Interface -- Divergence of Tolman's Length -- Competition of Meso-Scales -- Crossover to Tricriticality in Polymer Solutions -- Tolman's Length in Polymer Solutions -- Finite-size Scaling -- Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation -- Relaxation of Fluctuations -- Critical Slowing Down -- Homogeneous Nucleation -- Spinodal Decomposition -- Conclusion -- References -- SAFT Associating Fluids and Fluid Mixtures / Amparo Galindo. 7.1. 7.2. 7.2.1. 7.2.2. 7.3. 7.3.1. 7.3.2. 7.3.3. 7.3.4. 7.4. 7.4.1. 7.4.2. 7.4.3. 7.4.4. 7.5. 7.5.1. 7.5.2. 7.5.3. 7.6. 7.6.1. 7.6.2. 7.6.3. 7.6.4. 7.7. ch. 8 Introduction -- Statistical Mechanical Theories of Association and Wertheim's Theory -- SAFT Equations of State -- SAFT-HS and SAFT-HR -- Soft-SAFT -- SAFT-VR -- PC-SAFT -- Summary -- Extensions of the SAFT Approach -- Modelling the Critical Region -- Polar Fluids -- Ion-Containing Fluids -- Modelling Inhomogeneous Fluids -- Dense Phases: Liquid Crystals and Solids -- Parameter Estimation: Towards more Predictive Approaches -- Pure-component Parameter Estimation -- Use of Quantum Mechanics in SAFT Equations of State -- Unlike Binary Intermolecular Parameters -- SAFT Group-Contribution Approaches -- Homonuclear Group-Contribution Models in SAFT -- Heteronuclear Group Contribution Models in SAFT -- Concluding Remarks -- References -- Polydisperse Fluids / Introduction -- Influence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution. Dieter Browarzik -- 8.1. 8.2. 8.3. 8.3.1. 8.3.2. 8.3.3. 8.3.4. 8.3.5. 8.4. 8.4.1. 8.4.2. 8.4.3. 8.4.4. 8.4.5. 8.5. 8.5.1. 8.5.2. 8.5.3. 8.6. 8.6.1. 8.6.2. 8.7. ch. 9 9.1. 9.2. Approaches to Polydispersity -- The Pseudo-component Method -- Continuous Thermodynamics -- Application to Real Systems -- Polymer Systems -- Petroleum Fluids, Asphaltenes, Waxes and Other Applications -- Conclusions -- References -- Thermodynamic Behaviour of Fluids near Critical Points / Introduction -- General Theory of Critical Behaviour -- Scaling Fields, Critical Exponents, and Critical Amplitudes -- Parametric Equation of State -- One-Component Fluids -- Simple Scaling -- Revised Scaling -- Complete Scaling -- Vapour-Liquid Equilibrium -- Symmetric Corrections to Scaling -- Binary Fluid Mixtures -- Isomorphic Critical Behaviour of Mixtures -- Incompressible Liquid Mixtures -- Weakly Compressible Liquid Mixtures -- Compressible Fluid Mixtures -- Dilute Solutions -- Crossover Critical Behaviour -- Crossover from Ising-like to Mean-Field Critical Behaviour. Mikhail A. Anisimov -- 9.3. 9.3.1. 9.3.2. 9.4. 9.4.1. 9.4.2. 9.5. ch. 10 10.1. 10.2. 10.2.1. 10.2.2. 10.3. 10.3.1. 10.3.2. 10.3.3. 10.3.4. 10.3.5. 10.4. 10.4.1. 10.4.2. 10.4.3. 10.4.4. 10.4.5. 10.5. 10.5.1. Effective Critical Exponents -- Global Crossover Behaviour of Fluids -- Discussion -- Acknowledgements -- References -- Phase Behaviour of Ionic Liquid Systems / Introduction -- Phase Behaviour of Binary Ionic Liquid Systems -- Phase Behaviour of (Ionic Liquid + Gas Mixtures) -- Phase Behaviour of (Ionic Liquid + Water) -- Phase Behaviour of (Ionic Liquid + Organic) -- Phase Behaviour of Ternary Ionic Liquid Systems -- Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic) -- Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic) -- Phase Behaviour of (Ionic Liquid + Water + Alcohol) -- Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures -- Modeling of the Phase Behaviour of Ionic Liquid Systems -- Molecular Simulations -- Excess Gibbs-energy Methods -- Equation of State Modeling -- Quantum Chemical Methods -- References -- Multi-parameter Equations of State for Pure Fluids and Mixtures / Cor J. Peters -- Roland Span. 10.5.2. 10.5.3. 10.6. ch. 11 11.1. 11.2. 11.2.1. 11.2.2. 11.2.3. 11.3. 11.3.1. 11.3.2. 11.3.3. 11.3.4. 11.4. 11.4.1. 11.4.2. 11.4.3. 11.4.4. ch. 12 Introduction -- The Development of a Thermodynamic Property Formulation -- Fitting an Equation of State to Experimental Data -- Recent Nonlinear Fitting Methods -- Pressure-Explicit Equations of State -- Cubic Equations -- The Benedict-Webb-Rubin Equation of State -- The Bender Equation of State -- The Jacobsen-Stewart Equation of State -- Thermodynamic Properties from Pressure-Explicit Equations of State -- Fundamental Equations -- The Equation of Keenan, Keyes, Hill, and Moore -- The Equations of Haar, Gallagher, and Kell -- The Equation of Schmidt and Wagner -- Reference Equations of Wagner -- Technical Equations of Span and of Lemmon -- Recent Equations of State. 12.1. 12.2. 12.3. 12.3.1. 12.4. 12.4.1. 12.4.2. 12.4.3. 12.4.4. 12.4.5. 12.5. 12.5.1. 12.5.2. 12.5.3. 12.5.4. 12.5.5. 12.5.6. Note continued-- Concluding Remarks -- References -- Applied Non-Equilibrium Thermodynamics / Introduction -- A Systematic Thermodynamic Theory for Transport -- On the Validity of the Assumption of Local Equilibrium -- Concluding remarks -- Fluxes and Forces from the Second Law of Thermodynamics -- Continuous phases -- Maxwell-Stefan Equations -- Discontinuous Systems -- Concluding Remarks -- Chemical Reactions -- Thermal Diffusion in a Reacting System -- Mesoscopic Description Along the Reaction Coordinate -- Heterogeneous Catalysis -- Concluding Remarks -- The Path of Energy-Efficient Operation -- An Optimisation Procedure -- Optimal Heat Exchange -- The Highway Hypothesis for a Chemical Reactor -- Energy-Efficient Production of Hydrogen Gas -- Conclusions -- References. Dick Bedeaux -- 13.6. ch. 14 14.1. 14.1.1. 14.1.2. 14.1.3. 14.2. 14.2.1. 14.2.2. 14.2.3. 14.2.4. 14.3. 14.3.1. 14.3.2. 14.3.3. 14.3.4. 14.4. 14.4.1. 14.4.2. 14.4.3. 14.4.4. 14.4.
Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.