TY - BOOK AU - Groves,Timothy R. TI - Charged Particle Optics Theory: An Introduction SN - 9781351831208 U1 - 537.56 PY - 2014/// CY - Milton PB - Taylor & Francis Group KW - Electronic books N1 - Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- 1 Introduction: The optical nature of a charged particle beam -- 2 Geometrical optics -- 2.1 Relativistic classical mechanics -- 2.1.1 Hamilton's principle of least action -- 2.1.2 The Hamiltonian function and energy conservation -- 2.1.3 Mechanical analog of Fermat's principle -- 2.2 Exact trajectory equation for a single particle -- 2.3 Conservation laws -- 2.3.1 The Lagrange invariant -- 2.3.2 Liouville's theorem and brightness conservation -- 2.4 General curvilinear axis -- 2.4.1 Equation of motion in terms of transverse coordinates and slopes -- 2.4.2 Natural units -- 2.5 Axial symmetry -- 2.5.1 Exact equations of motion for axially symmetric fields -- 2.5.2 Paraxial approximation, Gaussian optics -- 2.5.3 Series solution for the general ray equation -- 2.5.4 Space charge -- 2.5.5 The primary geometrical aberrations -- 2.5.6 Spherical aberration -- 2.5.7 Field aberrations -- 2.5.8 Chromatic aberration -- 2.5.9 Intensity point spread function -- 2.6 Stochastic Coulomb scattering -- 2.6.1 Monte Carlo simulation -- 2.6.2 Analytical approximation by Markov's method of random flights -- 2.7 Hamilton-Jacobi theory -- 2.7.1 Canonical transformations -- 2.7.2 Applications of Hamilton-Jacobi theory -- 2.7.3 Hamilton-Jacobi theory and geometrical optics -- 3 Wave optics -- 3.1 Quantum mechanical description of particle motion -- 3.1.1 The postulates of quantum mechanics -- 3.1.2 Particle motion in a field-free space -- 3.1.3 Wave packet propagation and the Heisenberg uncertainty principle -- 3.1.4 The quantum mechanical analog of Fermat's principle for matter waves -- 3.2 Particle motion in a general electromagnetic potential -- 3.2.1 Path integral approach for the time-dependent wave function; 3.2.2 Series solution for a particle in a general electromagnetic potential -- 3.2.3 Quantum interference effects in electromagnetic potentials -- 3.2.4 The Klein-Gordon equation and the covariant wave function -- 3.2.5 Physical interpretation of the wave function and its practical application -- 3.3 Diffraction -- 3.3.1 The Fresnel-Kirchhoff relation -- 3.3.2 The Fresnel and Fraunhofer approximations -- 3.3.3 Amplitude in the Gaussian image plane -- 3.3.4 Amplitude in the diffraction plane -- 3.3.5 Optical transformation for a general imaging system with coherent illumination -- 3.3.6 Optical transformation for a general imaging system with incoherent illumination -- 3.3.7 The wave front aberration function -- 3.3.8 Relationship between diffraction and the Heisenberg uncertainty principle -- 4 Particle scattering -- 4.1 Classical particle kinematics -- 4.2 Scattering cross section and classical scattering -- 4.3 Integral expression of Schr�odinger's equation -- 4.4 Green's function solution for elastic scattering -- 4.5 Perturbation theory -- 4.6 Perturbation solution for elastic scattering -- 4.7 Inelastic scattering of a particle by a target atom -- 4.8 Slowing of a charged particle in a dielectric medium -- 4.9 Small angle plural scattering of fast electrons -- 5 Electron emission from solids -- 5.1 The image force -- 5.2 The incident current density -- 5.3 Thermionic emission -- 5.4 Field emission -- 5.5 Emission with elevated temperature and field -- 5.6 Space charge limited emission -- Appendix A The Fourier transform -- Appendix B Linear second-order dierential equation -- Bibliography -- Index UR - https://ebookcentral.proquest.com/lib/bacm-ebooks/detail.action?docID=7244811 ER -