First steps in random walks [electronic resource] : from tools to applications / J. Klafter and I.M. Sokolov.

By: Klafter, J. (Joseph)Contributor(s): Sokolov, Igor M, 1958- | ProQuest (Firm)Material type: TextTextPublication details: Oxford : Oxford University Press, 2011Description: vi, 152 p. : illISBN: 9780191552953 (electronic bk.)Subject(s): Random walks (Mathematics)Genre/Form: Electronic books.DDC classification: 519.2/82 LOC classification: QA274.73 | .K53 2011Online resources: Click to View
Contents:
1. Characteristic functions -- 2. Generating functions and applications -- 3. Continuous-time random walks -- 4. CTRW and aging phenomena -- 5. Master equations -- 6. Fractional diffusion and Fokker-Planck equations for subdiffusion -- 7. Levy flights -- 8. Coupled CTRW and Levy walks -- 9. Simple reactions : A+B->B -- 10. Random walks on percolation structures.
Summary: "The name "random walk" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of "Nature". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics and chemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcellular structures) and in many other disciplines. The random walk approach serves not only as a model of simple diffusion but of many complex sub- and super-diffusive transport processes as well. This book discusses the main variants of random walks and gives the most important mathematical tools for their theoretical description"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

1. Characteristic functions -- 2. Generating functions and applications -- 3. Continuous-time random walks -- 4. CTRW and aging phenomena -- 5. Master equations -- 6. Fractional diffusion and Fokker-Planck equations for subdiffusion -- 7. Levy flights -- 8. Coupled CTRW and Levy walks -- 9. Simple reactions : A+B->B -- 10. Random walks on percolation structures.

"The name "random walk" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of "Nature". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics and chemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcellular structures) and in many other disciplines. The random walk approach serves not only as a model of simple diffusion but of many complex sub- and super-diffusive transport processes as well. This book discusses the main variants of random walks and gives the most important mathematical tools for their theoretical description"-- Provided by publisher.

Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.

There are no comments on this title.

to post a comment.