Proceedings of the First International Conference on Advances in Computer Vision and Artificial Intelligence Technologies (ACVAIT 2022).
Material type: TextSeries: Advances in Intelligent Systems Research SeriesPublisher: Dordrecht : Atlantis Press (Zeger Karssen), 2023Copyright date: �2023Edition: 1st edDescription: 1 online resource (746 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9789464631968Genre/Form: Electronic books.Additional physical formats: Print version:: Proceedings of the First International Conference on Advances in Computer Vision and Artificial Intelligence Technologies (ACVAIT 2022)LOC classification: TA1501-1820Online resources: Click to ViewIntro -- Preface -- Organization -- Contents -- Peer-Review Statements -- 1 Review Procedure -- 2 Quality Criteria -- 3 Key Metrics -- An Improved Computer Aided System for Lung Cancer Detection using Image Processing Techniques -- 1 Introduction -- 2 Literature survey -- 3 Methodology -- 4 Result -- 5 Conclusion -- References -- Automated Detection of Tuberculosis Based on Cantilever Biosensor -- 1 Introduction -- 2 Bio-Mems Cantilever Sensor -- 3 Experimental Details -- 4 Result and Discussion -- References -- Diagnosing Microscopic Blood Samples for Early Detection of Leukemia by Deep and Hybrid Learning Techniques -- 1 Introduction -- 2 Related Work -- 3 Materials and Methods -- 3.1 Description of Two Datasets -- 3.2 Pre-processing -- 3.3 Convolutional Neural Networks (CNN) -- 3.4 Hybrid of Deep and Machine Learning -- 4 Experimental Result -- 4.1 Splitting Dataset -- 4.2 Evaluation Metrics -- 4.3 CNN Models Results -- 4.4 Results of the Hybrid CNN with SVM Algorithm -- 5 Discussion -- 6 Conclusion -- References -- Lung Cancer Nodules Detection Using Ideal Features Extraction Technique in CT Images -- 1 Introduction -- 2 Related Work -- 3 Methods and materials -- 3.1 Dataset -- 3.2 Image Preprocessing -- 3.3 Segmentation -- 3.4 Feature Extraction -- 3.5 Classification Using Hybrid-CNN -- 4 Result and Discussion -- 5 Conclusion -- References -- Fuzzy Level Set Search and Rescue Optimization (FLSSR) Based Segmentation of Pediatric Brain Tumor -- 1 Introduction -- 2 Related Work -- 3 Proposed Methodology -- 3.1 Preprocessing -- 3.2 Fuzzy Level Set Search and Rescue Optimization (FLSSR) for Segmentation Process: -- 4 Results and Discussions -- 5 Performance Evaluation -- 6 Conclusion -- References -- Investigating EEG Images of Cognitive Actions for Robotic Arm -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Participants.
3.2 Technical Analysis -- 3.3 Analyzing .edf Files via EEGLAB -- 3.4 Robotic Arm Overview -- 3.5 Active Region Identification -- 3.6 ERD and ERS for the Components in Frontal Region -- 4 Performance evaluation of the Robotic Arm -- 5 Result -- 6 Conclusion -- References -- Localization of Intervertebral Discs Using Deep-Learning and Region Growing Technique -- 1 Introduction -- 2 Review of the Literature -- 3 Proposed Methodology -- 3.1 Data -- 3.2 Pre-processing -- 3.3 Proposed Method -- 4 Results and Discussion -- 4.1 Evaluation Matrices -- 4.2 Effect of Hourglass Attention Mechanism -- 5 Conclusion -- References -- Identification of Skin Disease Using Machine Learning -- 1 Introduction -- 2 Related Works -- 3 Method and Techniques -- 3.1 Input Images -- 3.2 Image Preprocessing -- 3.3 Filtering Techniques -- 3.4 Gaussian Filter -- 3.5 Image Segmentation -- 3.6 Support Vector Machine (SVM) -- 3.7 K-nearest Neighbor (KNN) -- 3.8 Feature Extraction -- 3.9 Color Moments -- 3.10 Texture Feature Extraction -- 4 Performance Measures -- 5 Result and Discussion -- 6 Conclusion -- References -- Apple Classification Based on MRI Images Using VGG16 Convolutional Deep Learning Model -- 1 Introduction -- 2 Literature Survey -- 3 Materials and Methods -- 3.1 Dataset -- 3.2 VGG Model -- 4 Results and Discussion -- 5 Conclusion and Future Work -- References -- Design a Novel Detection Using KNN Classification Technique for Early Sign of Diabetic Maculopathy -- 1 Introduction -- 2 Methodology -- 2.1 Preprocessing -- 2.2 RGB Channel -- 2.3 Histogram -- 2.4 Enhancement -- 2.5 KNN Classification -- 3 Experiment Result -- 4 Conclusion -- References -- Extraction of Bank Cheque Fields Based on Faster R-CNN -- 1 Introduction -- 2 Related Work and Overview -- 2.1 Related Work -- 2.2 Faster RCNN -- 3 Methodology -- 3.1 ConvNet Layers -- 3.2 Region Proposal Networks.
3.3 Region of Interest Pooling Layer -- 3.4 Classification Layers -- 4 Experiment and Results -- 4.1 Dataset -- 4.2 Experiment Results -- 5 Conclusion -- References -- Multimodal Deep Learning Based Score Level Fusion Using Face and Fingerprint -- 1 Introduction -- 2 Literature Survey -- 3 About Database -- 4 Experimental Setup -- 5 Proposed Methodology -- 5.1 Pre-processing -- 5.2 CNN -- 5.3 VGG16 -- 5.4 Features Classification -- 5.5 Score Level Fusion -- 6 Performance Analysis -- 6.1 Classification and Confusion Matrix -- 7 Result and Discussion -- 8 Conclusion -- 9 Contributions -- References -- Enhanced Technique for Exemplar Based Image Inpainting Method -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Input Image -- 3.2 Perform Cropping -- 3.3 Perform Inpainting by Criminisi Method -- 3.4 Finding Parameters -- 3.5 Perform Tensor Inpainting -- 4 Experimental Results -- 5 Conclusion -- References -- An Optimal (2, 2) Visual Cryptography Schemes For Information Security -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Experimental Result -- 5 Discussion and Performance Analysis -- 5.1 Pixel Expansion -- 5.2 Contrast and Statistical Analysis -- 5.3 Mean Square Error -- 5.4 Peak-Signal-to-Noise-Ratio -- 5.5 Universal-Index-Quality (UIQ) -- 5.6 Maximum Difference (MD) -- 5.7 Average Difference (AD) -- 6 Conclusion -- References -- A Numeral Script Identification from a Multi-lingual Printed Document Image -- 1 Introduction -- 1.1 Motivation -- 2 Proposed Method -- 3 Experimental Results -- 4 Conclusion -- References -- A Novel Approach for Object Detection Using Optimized Convolutional Neural Network to Assist Visually Impaired People -- 1 Introduction -- 2 Related Work -- 3 Architectural Description of the Proposed Object Detection Model for Visually Impaired (ODMVI) -- 3.1 Preprocessing -- 3.2 Segmentation.
3.3 Feature Extraction -- 4 Optimal Feature Selection -- 5 Object Detection Using CNN -- 5.1 Convolution Layer -- 5.2 Pooling Layer -- 5.3 Fully Connected Layer -- 6 Dataset -- 7 Results and Discussion -- 7.1 Simulation Procedure -- 7.2 Convergence Analysis -- 7.3 Performance Evaluation of ODMVI -- 8 Conclusion and Future Scope -- References -- A Machine Learning Based Approach for Image Quality Assessment of Forged Document Images -- 1 Introduction -- 2 Related Work -- 3 Proposed Methodology -- 3.1 Pre-processing -- 3.2 Feature Extraction -- 3.3 Classification -- 4 Implementation and Results -- 4.1 Dataset -- 5 Statistical Test of Significance -- 6 Conclusion -- References -- Comparative Study of Grid-Inverted List Hybrid Indexing Techniques for Moving Objects and Queries -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Grid-Inverted List Hybrid Index -- 3.2 KNN Query -- 3.3 Hybrid Index Implementation with YPK-CNN Technique -- 3.4 Hybrid Index Implementation with SEA-CNN Technique -- 3.5 Hybrid Index Implementation with CPM Technique -- 3.6 Differences Between YPK-CNN, SEA-CNN and CPM Techniques -- 3.7 Proposed Algorithms -- 4 Experimental work -- 5 Results and Discussion -- 6 Conclusion -- References -- Text-Independent Source Identification of Printed Documents using Texture Features and CNN Model -- 1 Introduction -- 2 Review of Related Studies -- 3 Proposed Method -- 3.1 Data Collection -- 3.2 Pre-processing -- 3.3 Feature Extraction -- 4 Experimental Results and Discussion -- 4.1 Performance of Textual Features -- 4.2 Deep Learning CNN Performance Measurement -- 4.3 Comparison Analysis -- 5 Conclusion -- References -- A Vision-Based Sign Language Recognition using Statistical and Spatio-Temporal Features -- 1 Introduction -- 2 Literature Review -- 3 Proposed Methodology -- 3.1 Data Collection -- 3.2 Feature Extraction and Learning.
4 Results and Discussion -- 4.1 Raw Data Pre-processing -- 4.2 Extraction and Analysis of Statistical and Spatio-Temporal Features -- 4.3 Classification of Statistical Features -- 4.4 Early Fusion of Statistical and Spatio-Temporal Features -- 4.5 Comparison of Results -- 4.6 Conclusion and Future Work -- References -- Single Image Dehazing Using Haze Veil Analysis and CLAHE -- 1 Introduction -- 2 Methodology -- 3 Haze Veil Calculation -- 3.1 Computing Reflectance Image -- 4 Experimental Results -- 5 Conclusion -- References -- HiTEK Multilingual Speech Identification Using Combinatorial Model -- 1 Introduction -- 2 Literature Review -- 3 Challenges -- 4 Methodology -- 4.1 Hidden Markov Model- Gaussian Mixture Model -- 4.2 Hidden Markov Model- Artificial Neural Networks -- 4.3 Hidden Markov Model- Deep Neural Networks -- 4.4 POS Tagging -- 4.5 Tokenization and Stemming -- 4.6 Morphological Analysis -- 4.7 Syntactical Analysis -- 4.8 Semantic Analysis -- 4.9 Word Discourse Knowledge -- 5 Experimental Setup and Results -- 6 Conclusion and Future Scope -- References -- Devanagari License Plate Detection, Classification and Recognition -- 1 Introduction -- 1.1 Devanagari (Nepalese) License Plate -- 2 Literature Review -- 3 Proposed Method -- 3.1 LP Detection and Classification -- 3.2 Character Segmentation and Recognition -- 4 Result and Discussion -- 4.1 DLP Dataset -- 4.2 Detection and Classification Results -- 4.3 Character Recognition Results -- 4.4 Real-Time Implementation Results -- 5 Conclusion -- References -- Pre-trained Convolutional Neural Networks for Gender Classification -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Keras Models -- 3.2 Custom CNN -- 4 Results and Discussion -- 5 Conclusion -- References -- AVAO Enabled Deep Learning Based Person Authentication Using Fingerprint -- 1 Introduction -- 2 Motivation.
2.1 Literature Review.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.