GeomInt-Mechanical Integrity of Host Rocks.

By: Kolditz, OlafContributor(s): G�orke, Uwe-Jens | Konietzky, Heinz | Ma�mann, Jobst | Nest, Mathias | Steeb, Holger | Wuttke, Frank | Nagel, ThomasMaterial type: TextTextSeries: Terrestrial Environmental Sciences SeriesPublisher: Cham : Springer International Publishing AG, 2021Copyright date: �2021Edition: 1st edDescription: 1 online resource (287 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9783030619091Genre/Form: Electronic books.Additional physical formats: Print version:: GeomInt-Mechanical Integrity of Host RocksLOC classification: TA703-705.4Online resources: Click to View
Contents:
Intro -- Acknowledgements -- About this book -- Hintergrund -- Das GeomInt-Projekt -- Der GeomInt-Ansatz: lab, in-situ, in-silico, virtual reality -- Contents -- Contributors -- 1 Introduction to GeomInt -- 1.1 Background -- 1.2 The GeomInt Project -- 1.3 GeomInt Approach: Lab, In-situ, In-silico, Virtual Reality -- 1.4 GeomInt Team -- 1.4.1 BGR -- 1.4.2 CAU -- 1.4.3 IfG -- 1.4.4 TUBAF -- 1.4.5 UFZ -- 1.4.6 UoS -- Reference -- 2 Experimental Platform -- 2.1 Rock Material Properties -- 2.1.1 Opalinus Clay from Mont Terri, Switzerland -- 2.1.2 Rock Salt Samples -- 2.1.3 Crystalline Rock Samples -- 2.2 Thermo-Hydro-Mechanical Laboratory Tests -- 2.2.1 X-ray Micro Computed Tomography -- 2.2.2 Fracture Toughness of the Opalinus Clay -- 2.2.3 Brazilian Disk Test on Barrier Rocks -- 2.2.4 True Triaxial Test on the Cubic Opalinus Clay Samples -- 2.2.5 Triaxial Compression Strength Tests for Salt-Methodology and Equipment -- 2.3 Shrinkage and Swelling Laboratory Tests (WP1) -- 2.3.1 The Swelling and Permeability of T4 Salt Clay -- 2.3.2 The Wetting and Drying Paths of the Opalinus Clay -- 2.3.3 In-situ Condition Desiccation Process -- 2.4 Pressure Driven Percolation Laboratory Tests (WP2) -- 2.4.1 Pressure Driven Percolation -- 2.4.2 Fluid Driven Percolation Tests on Cubic Opalinus Claystone Samples from Mont Terri -- 2.5 Stress Redistribution Laboratory Tests (WP3) -- 2.5.1 Direct Shear Test -- 2.5.2 Cyclic Loading Pressure Diffusion -- References -- 3 Numerical Platform -- 3.1 State-of-the-Art -- 3.1.1 THM Simulations and Open Source Development -- 3.1.2 Continuum Models (XFEM and Variational Phase Field) -- 3.1.3 Discontinuum Models -- 3.1.4 Smoothed Particle Hydrodynamics -- 3.2 Numerical Methods -- 3.2.1 FFS-Forces on Fracture Surfaces -- 3.2.2 LEM-Lattice-Element-Method -- 3.2.3 DEM-Distinct-Element-Method.
3.2.4 SPH-Smoothed-Particle-Hydrodynamics -- 3.2.5 PFM-Variational Phase-Field Method -- 3.2.6 HDF-Hybrid-Dimensional-Formulation -- References -- 4 Model-Experiment-Exercises (MEX) -- 4.1 Model-Experiment-Exercise MEX 0-1: Bending Fracture Test -- 4.1.1 Experimental Set-Up -- 4.1.2 Model Approach -- 4.1.3 Results and Discussion -- 4.2 Model-Experiments-Exercise MEX 0-1 (01): Bending Fracture Test (OPA) -- 4.2.1 Experimental Set-Up and Results -- 4.2.2 Model Approach -- 4.3 Model-Experiment-Exercise MEX 0-2: Humidity Controlled Long-Term Bending Test -- 4.3.1 Experimental Set-Up -- 4.3.2 Model Approach -- 4.4 Model-Experiment-Exercise MEX 1-1: Swelling of Red Salt Clay -- 4.4.1 Experiment -- 4.4.2 Model Approach -- 4.4.3 Results and Discussion -- 4.5 Model-Experiment-Exercise MEX 1-2: The Drying and Wetting Paths of Opalinus Clay -- 4.5.1 Experimental Set-Up -- 4.5.2 Model Approaches -- 4.5.3 Results and Discussion -- 4.6 Model Exercise 1-3: Desiccation Under In-Situ Conditions -- 4.7 Model Exercise 1-4: CD/LP Experiment (Mont Terri) -- 4.7.1 Motivation -- 4.7.2 Problem Statement -- 4.7.3 Unsaturated One-Phase Flow Using the Richards Approximation (``Richards Flow'', RF) -- 4.7.4 Unsaturated Single-Phase Coupled with Linear Elasticity (``Richards Mechanics'', RM) -- 4.7.5 Code Performance -- 4.7.6 Conclusions -- 4.8 Model-Experiment-Exercise MEX 2-1a: Fluid Driven Percolation in Salt -- 4.8.1 Experimental Set-Up -- 4.8.2 Model Approaches -- 4.8.3 Results and Discussion -- 4.9 Model-Experiment-Exercise MEX 2-1b: Fluid Driven Percolation in Clay -- 4.9.1 Experimental Set-Up -- 4.9.2 Model Approaches -- 4.9.3 Results and Discussion -- 4.10 Model-Experiment-Exercise MEX 2-2: Pressure Driven Percolation (Healing) -- 4.10.1 Experimental Set-Up -- 4.10.2 Model Approaches.
4.11 Model-Experiment-Exercise 2-3: Effect of Compressibility on Pressure Driven Percolation -- 4.11.1 Model Set-Up -- 4.11.2 Model Approaches -- 4.11.3 Discussion (Preliminary) -- 4.12 Model-Experiment-Exercise 2-4: Large Wellbore Test (Springen) -- 4.13 Model-Experiment-Exercise MEX 3-1: Constant Normal Load (CNL) Direct Shear Test -- 4.13.1 Experimental Set-Up -- 4.13.2 Model Approach -- 4.13.3 Results and Discussion -- 4.14 Model-Experiment-Exercise MEX 3-2: Constant Normal Stiffness (CNS) Direct Shear Test -- 4.14.1 Experimental Set-Up -- 4.14.2 Model Approach -- 4.14.3 Results and Discussion -- 4.15 Model-Experiment-Exercise MEX 3-3: Cycling Loading Pressure Diffusion -- 4.15.1 Experimental Set-Up -- 4.15.2 Model Approach -- 4.15.3 Results and Discussion -- References -- 5 Data Management -- 5.1 User Agreement and Data Management Plan -- 5.2 GeomInt Data -- 5.3 GeomInt DMP -- 5.3.1 MEX 0-1a: Bending Fracture Test -- 5.3.2 MEX 0-1b: Three-Point Fracture Toughness Test, Opalinus Clay -- 5.3.3 MEX 1-1: Swelling Process, Red Salt Clay -- 5.3.4 MEX 1-2: Drying and Wetting Paths of the Opalinus Clay -- 5.3.5 MEX 1-4: CD/LP Experiment (BGR) -- 5.3.6 MEX 2-1a: Pressure Driven Percolation in Salt -- 5.3.7 MEX 2-1b: Pressure Driven Percolation, Opalinus Claystone -- 5.3.8 MEX 2-2: Closure and Healing of Cracks (IfG) -- 5.3.9 MEX 2-3: Effect of Compressibility on Pressure Driven Percolation -- 5.3.10 MEX 2-4: Large Wellbore Test (Springen) -- 5.3.11 MEX 3-1: CNL Direct Shear Test Data (TUBAF) -- 5.3.12 MEX 3-2: CNS Test -- 5.3.13 MEX 3-3: Inverse Analysis of Reiche Zeche Data and Harmonic Testing of a Single Fracture -- References -- 6 Synthesis and Outlook -- 6.1 Synthesis-Directions -- 6.1.1 Numerical Methods Competencies -- 6.1.2 Proof-of-Concepts -- 6.1.3 International Collaboration -- 6.2 GeomInt Outlook-Future Work.
6.3 Pathways Through Swelling and Shrinking Processes -- 6.4 Displacements Due to Pressure-Driven Percolation -- 6.4.1 Pressure-Driven Percolation in Clay Rock Under In-Situ Conditions -- 6.4.2 Pressure-Driven Percolation in Salt Rock Under In-Situ Conditions -- 6.5 Displacements Due to Stress Redistribution -- 6.6 Data and Model Integration Using Virtualization and High-Performance Computing -- References -- 7 Code Descriptions -- 7.1 FFS-Forces on Fracture Surfaces -- 7.2 LEM-Lattice-Element-Method -- 7.3 SPH-Smoothed-Particle-Hydrodynamics -- 7.4 OpenGeoSys-Finite-Element-Method -- 7.5 HDF-Hybrid-Dimensional-Formulation -- References -- Appendix A Ergebnisse des GeomInt-Vorhabens -- A.1 AP1: Wegsamkeiten Durch Quell- und Schrumpfungsprozesse -- A.2 AP2: Wegsamkeiten Durch Druckgetriebene Perkolation -- A.3 AP3: Wegsamkeiten Durch Spannungsumlagerungen -- A.4 Synthese -- A.4.1 Experimentelle Plattform -- A.4.2 Modellierungs-Plattform -- Appendix B Symbols -- References -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Acknowledgements -- About this book -- Hintergrund -- Das GeomInt-Projekt -- Der GeomInt-Ansatz: lab, in-situ, in-silico, virtual reality -- Contents -- Contributors -- 1 Introduction to GeomInt -- 1.1 Background -- 1.2 The GeomInt Project -- 1.3 GeomInt Approach: Lab, In-situ, In-silico, Virtual Reality -- 1.4 GeomInt Team -- 1.4.1 BGR -- 1.4.2 CAU -- 1.4.3 IfG -- 1.4.4 TUBAF -- 1.4.5 UFZ -- 1.4.6 UoS -- Reference -- 2 Experimental Platform -- 2.1 Rock Material Properties -- 2.1.1 Opalinus Clay from Mont Terri, Switzerland -- 2.1.2 Rock Salt Samples -- 2.1.3 Crystalline Rock Samples -- 2.2 Thermo-Hydro-Mechanical Laboratory Tests -- 2.2.1 X-ray Micro Computed Tomography -- 2.2.2 Fracture Toughness of the Opalinus Clay -- 2.2.3 Brazilian Disk Test on Barrier Rocks -- 2.2.4 True Triaxial Test on the Cubic Opalinus Clay Samples -- 2.2.5 Triaxial Compression Strength Tests for Salt-Methodology and Equipment -- 2.3 Shrinkage and Swelling Laboratory Tests (WP1) -- 2.3.1 The Swelling and Permeability of T4 Salt Clay -- 2.3.2 The Wetting and Drying Paths of the Opalinus Clay -- 2.3.3 In-situ Condition Desiccation Process -- 2.4 Pressure Driven Percolation Laboratory Tests (WP2) -- 2.4.1 Pressure Driven Percolation -- 2.4.2 Fluid Driven Percolation Tests on Cubic Opalinus Claystone Samples from Mont Terri -- 2.5 Stress Redistribution Laboratory Tests (WP3) -- 2.5.1 Direct Shear Test -- 2.5.2 Cyclic Loading Pressure Diffusion -- References -- 3 Numerical Platform -- 3.1 State-of-the-Art -- 3.1.1 THM Simulations and Open Source Development -- 3.1.2 Continuum Models (XFEM and Variational Phase Field) -- 3.1.3 Discontinuum Models -- 3.1.4 Smoothed Particle Hydrodynamics -- 3.2 Numerical Methods -- 3.2.1 FFS-Forces on Fracture Surfaces -- 3.2.2 LEM-Lattice-Element-Method -- 3.2.3 DEM-Distinct-Element-Method.

3.2.4 SPH-Smoothed-Particle-Hydrodynamics -- 3.2.5 PFM-Variational Phase-Field Method -- 3.2.6 HDF-Hybrid-Dimensional-Formulation -- References -- 4 Model-Experiment-Exercises (MEX) -- 4.1 Model-Experiment-Exercise MEX 0-1: Bending Fracture Test -- 4.1.1 Experimental Set-Up -- 4.1.2 Model Approach -- 4.1.3 Results and Discussion -- 4.2 Model-Experiments-Exercise MEX 0-1 (01): Bending Fracture Test (OPA) -- 4.2.1 Experimental Set-Up and Results -- 4.2.2 Model Approach -- 4.3 Model-Experiment-Exercise MEX 0-2: Humidity Controlled Long-Term Bending Test -- 4.3.1 Experimental Set-Up -- 4.3.2 Model Approach -- 4.4 Model-Experiment-Exercise MEX 1-1: Swelling of Red Salt Clay -- 4.4.1 Experiment -- 4.4.2 Model Approach -- 4.4.3 Results and Discussion -- 4.5 Model-Experiment-Exercise MEX 1-2: The Drying and Wetting Paths of Opalinus Clay -- 4.5.1 Experimental Set-Up -- 4.5.2 Model Approaches -- 4.5.3 Results and Discussion -- 4.6 Model Exercise 1-3: Desiccation Under In-Situ Conditions -- 4.7 Model Exercise 1-4: CD/LP Experiment (Mont Terri) -- 4.7.1 Motivation -- 4.7.2 Problem Statement -- 4.7.3 Unsaturated One-Phase Flow Using the Richards Approximation (``Richards Flow'', RF) -- 4.7.4 Unsaturated Single-Phase Coupled with Linear Elasticity (``Richards Mechanics'', RM) -- 4.7.5 Code Performance -- 4.7.6 Conclusions -- 4.8 Model-Experiment-Exercise MEX 2-1a: Fluid Driven Percolation in Salt -- 4.8.1 Experimental Set-Up -- 4.8.2 Model Approaches -- 4.8.3 Results and Discussion -- 4.9 Model-Experiment-Exercise MEX 2-1b: Fluid Driven Percolation in Clay -- 4.9.1 Experimental Set-Up -- 4.9.2 Model Approaches -- 4.9.3 Results and Discussion -- 4.10 Model-Experiment-Exercise MEX 2-2: Pressure Driven Percolation (Healing) -- 4.10.1 Experimental Set-Up -- 4.10.2 Model Approaches.

4.11 Model-Experiment-Exercise 2-3: Effect of Compressibility on Pressure Driven Percolation -- 4.11.1 Model Set-Up -- 4.11.2 Model Approaches -- 4.11.3 Discussion (Preliminary) -- 4.12 Model-Experiment-Exercise 2-4: Large Wellbore Test (Springen) -- 4.13 Model-Experiment-Exercise MEX 3-1: Constant Normal Load (CNL) Direct Shear Test -- 4.13.1 Experimental Set-Up -- 4.13.2 Model Approach -- 4.13.3 Results and Discussion -- 4.14 Model-Experiment-Exercise MEX 3-2: Constant Normal Stiffness (CNS) Direct Shear Test -- 4.14.1 Experimental Set-Up -- 4.14.2 Model Approach -- 4.14.3 Results and Discussion -- 4.15 Model-Experiment-Exercise MEX 3-3: Cycling Loading Pressure Diffusion -- 4.15.1 Experimental Set-Up -- 4.15.2 Model Approach -- 4.15.3 Results and Discussion -- References -- 5 Data Management -- 5.1 User Agreement and Data Management Plan -- 5.2 GeomInt Data -- 5.3 GeomInt DMP -- 5.3.1 MEX 0-1a: Bending Fracture Test -- 5.3.2 MEX 0-1b: Three-Point Fracture Toughness Test, Opalinus Clay -- 5.3.3 MEX 1-1: Swelling Process, Red Salt Clay -- 5.3.4 MEX 1-2: Drying and Wetting Paths of the Opalinus Clay -- 5.3.5 MEX 1-4: CD/LP Experiment (BGR) -- 5.3.6 MEX 2-1a: Pressure Driven Percolation in Salt -- 5.3.7 MEX 2-1b: Pressure Driven Percolation, Opalinus Claystone -- 5.3.8 MEX 2-2: Closure and Healing of Cracks (IfG) -- 5.3.9 MEX 2-3: Effect of Compressibility on Pressure Driven Percolation -- 5.3.10 MEX 2-4: Large Wellbore Test (Springen) -- 5.3.11 MEX 3-1: CNL Direct Shear Test Data (TUBAF) -- 5.3.12 MEX 3-2: CNS Test -- 5.3.13 MEX 3-3: Inverse Analysis of Reiche Zeche Data and Harmonic Testing of a Single Fracture -- References -- 6 Synthesis and Outlook -- 6.1 Synthesis-Directions -- 6.1.1 Numerical Methods Competencies -- 6.1.2 Proof-of-Concepts -- 6.1.3 International Collaboration -- 6.2 GeomInt Outlook-Future Work.

6.3 Pathways Through Swelling and Shrinking Processes -- 6.4 Displacements Due to Pressure-Driven Percolation -- 6.4.1 Pressure-Driven Percolation in Clay Rock Under In-Situ Conditions -- 6.4.2 Pressure-Driven Percolation in Salt Rock Under In-Situ Conditions -- 6.5 Displacements Due to Stress Redistribution -- 6.6 Data and Model Integration Using Virtualization and High-Performance Computing -- References -- 7 Code Descriptions -- 7.1 FFS-Forces on Fracture Surfaces -- 7.2 LEM-Lattice-Element-Method -- 7.3 SPH-Smoothed-Particle-Hydrodynamics -- 7.4 OpenGeoSys-Finite-Element-Method -- 7.5 HDF-Hybrid-Dimensional-Formulation -- References -- Appendix A Ergebnisse des GeomInt-Vorhabens -- A.1 AP1: Wegsamkeiten Durch Quell- und Schrumpfungsprozesse -- A.2 AP2: Wegsamkeiten Durch Druckgetriebene Perkolation -- A.3 AP3: Wegsamkeiten Durch Spannungsumlagerungen -- A.4 Synthese -- A.4.1 Experimentelle Plattform -- A.4.2 Modellierungs-Plattform -- Appendix B Symbols -- References -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.