Fading Foundations : Probability and the Regress Problem.

By: Atkinson, DavidContributor(s): Peijnenburg, JeanneMaterial type: TextTextSeries: Synthese LibraryPublisher: Cham : Springer International Publishing AG, 2017Copyright date: �2017Edition: 1st edDescription: 1 online resource (242 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9783319582955Genre/Form: Electronic books.Additional physical formats: Print version:: Fading FoundationsDDC classification: 111.6 LOC classification: BD143-237Online resources: Click to View
Contents:
Intro -- Preface -- Contents -- Chapter 1: The Regress Problem -- Abstract -- 1.1 Reasons for Reasons: Agrippa's Trilemma -- 1.2 Coherentism and Infinitism -- 1.3 Vicious Versus Innocuous Regress -- Chapter 2: Epistemic Justification -- Abstract -- 2.1 Making a Concept Clear -- 2.2 Two Questions -- 2.3 Entailment -- 2.4 Probabilistic Support -- 2.5 Smith's Normic Support -- 2.6 Alston's Epistemic Probability -- Chapter 3: The Probabilistic Regress -- Abstract -- 3.1 A New Twist -- 3.2 The Lewis-Reichenbach Dispute -- 3.3 Lewis's Argument -- 3.4 A Counterexample -- 3.5 A Nonuniform Probabilistic Regress -- 3.6 Usual and Exceptional Classes -- 3.7 Barbara Bacterium -- Chapter 4: Fading Foundations and the Emergence of Justification -- Abstract -- 4.1 Fading Foundations -- 4.2 Propositions versus Beliefs -- 4.3 Emergence of Justification -- 4.4 Where Does the Justification Come From? -- 4.5 Tour d'horizon -- Chapter 5: Finite Minds -- Abstract -- 5.1 Ought-Implies-Can -- 5.2 Completion and Computation -- 5.3 Probabilistic Justification as a Trade-Off -- 5.4 Carl the Calculator -- Chapter 6: Conceptual Objections -- Abstract -- 6.1 The No Starting Point Objection -- 6.2 A Probabilistic Regress Needs No Starting Point -- 6.3 The Reductio Argument -- 6.4 How the Probabilistic Regress Avoids the Reductio -- 6.5 Threshold and Closure Constraints -- 6.6 Symmetry and Nontransitivity -- Chapter 7: Higher-Order Probabilities -- Abstract -- 7.1 Two Probabilistic Regresses -- 7.2 Second- and Higher-Order Probabilities -- 7.3 Rescher's Argument -- 7.4 The Two Regresses Are Isomorphic -- 7.5 Making Coins -- Chapter 8: Loops and Networks -- Abstract -- 8.1 Tortoises and Serpents -- 8.2 One-Dimensional Loops -- 8.3 Multi-Dimensional Networks -- 8.4 The Mandelbrot Fractal -- 8.5 Mushrooming Out -- 8.6 Causal Graphs -- Appendix A: The Rule of Total Probability.
A.1 Iterating the rule of total probability -- A.2 Extrema of the finite series -- A.3 Convergence of the infinite series -- A.4 When does the remainder term vanish? -- A.5 Example in the usual class -- A.6 Example in the exceptional class -- A.7 The regress of entailment -- A.8 Markov condition and conjunctions -- Appendix B: Closure Under Conjunction -- Appendix C: Washing Out of the Prior -- C.1 Washing out -- C.2 Example: a bent coin -- C.3 Washing out is not fading away -- Appendix D: Fixed-Point Methods -- D.1 Linear iteration -- D.2 Quadratic Iteration -- References -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Preface -- Contents -- Chapter 1: The Regress Problem -- Abstract -- 1.1 Reasons for Reasons: Agrippa's Trilemma -- 1.2 Coherentism and Infinitism -- 1.3 Vicious Versus Innocuous Regress -- Chapter 2: Epistemic Justification -- Abstract -- 2.1 Making a Concept Clear -- 2.2 Two Questions -- 2.3 Entailment -- 2.4 Probabilistic Support -- 2.5 Smith's Normic Support -- 2.6 Alston's Epistemic Probability -- Chapter 3: The Probabilistic Regress -- Abstract -- 3.1 A New Twist -- 3.2 The Lewis-Reichenbach Dispute -- 3.3 Lewis's Argument -- 3.4 A Counterexample -- 3.5 A Nonuniform Probabilistic Regress -- 3.6 Usual and Exceptional Classes -- 3.7 Barbara Bacterium -- Chapter 4: Fading Foundations and the Emergence of Justification -- Abstract -- 4.1 Fading Foundations -- 4.2 Propositions versus Beliefs -- 4.3 Emergence of Justification -- 4.4 Where Does the Justification Come From? -- 4.5 Tour d'horizon -- Chapter 5: Finite Minds -- Abstract -- 5.1 Ought-Implies-Can -- 5.2 Completion and Computation -- 5.3 Probabilistic Justification as a Trade-Off -- 5.4 Carl the Calculator -- Chapter 6: Conceptual Objections -- Abstract -- 6.1 The No Starting Point Objection -- 6.2 A Probabilistic Regress Needs No Starting Point -- 6.3 The Reductio Argument -- 6.4 How the Probabilistic Regress Avoids the Reductio -- 6.5 Threshold and Closure Constraints -- 6.6 Symmetry and Nontransitivity -- Chapter 7: Higher-Order Probabilities -- Abstract -- 7.1 Two Probabilistic Regresses -- 7.2 Second- and Higher-Order Probabilities -- 7.3 Rescher's Argument -- 7.4 The Two Regresses Are Isomorphic -- 7.5 Making Coins -- Chapter 8: Loops and Networks -- Abstract -- 8.1 Tortoises and Serpents -- 8.2 One-Dimensional Loops -- 8.3 Multi-Dimensional Networks -- 8.4 The Mandelbrot Fractal -- 8.5 Mushrooming Out -- 8.6 Causal Graphs -- Appendix A: The Rule of Total Probability.

A.1 Iterating the rule of total probability -- A.2 Extrema of the finite series -- A.3 Convergence of the infinite series -- A.4 When does the remainder term vanish? -- A.5 Example in the usual class -- A.6 Example in the exceptional class -- A.7 The regress of entailment -- A.8 Markov condition and conjunctions -- Appendix B: Closure Under Conjunction -- Appendix C: Washing Out of the Prior -- C.1 Washing out -- C.2 Example: a bent coin -- C.3 Washing out is not fading away -- Appendix D: Fixed-Point Methods -- D.1 Linear iteration -- D.2 Quadratic Iteration -- References -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.