Integrated Groundwater Management : Concepts, Approaches and Challenges.

By: Jakeman, Anthony JContributor(s): Barreteau, Olivier | Hunt, Randall J | Rinaudo, Jean-Daniel | Ross, AndrewMaterial type: TextTextPublisher: Cham : Springer International Publishing AG, 2016Copyright date: �2016Edition: 1st edDescription: 1 online resource (756 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9783319235769Genre/Form: Electronic books.Additional physical formats: Print version:: Integrated Groundwater ManagementDDC classification: 333.9104 LOC classification: QE1-996.5Online resources: Click to View
Contents:
Intro -- Foreword -- Contents -- Part I: Integration Overview and Problem Settings -- 1: Integrated Groundwater Management: An Overview of Concepts and Challenges -- 1.1 Introduction -- 1.2 Integrated Groundwater Management -- 1.2.1 Issues of Concern -- 1.2.2 Governance -- 1.2.3 Stakeholders -- 1.2.4 Human Setting -- 1.2.5 Natural Setting -- 1.2.6 Spatial Scales -- 1.2.7 Time Scales -- 1.2.8 Disciplines -- 1.2.9 Methods, Models, Other Tools and Data -- 1.2.10 Uncertainty -- 1.3 Integrated Assessment, Modelling, and Other IGM Tools -- 1.4 Book Overview and Key Messages -- 1.4.1 Part I: Integration Overview and Problem Settings -- 1.4.2 Part II: Governance -- 1.4.3 Part III: Biophysical Aspects -- 1.4.4 Part IV: Socioeconomics -- 1.4.5 Part V: Modelling and Decision Support -- References -- 2: The International Scale of the Groundwater Issue -- 2.1 Introduction -- 2.2 The Concept of Groundwater Depletion -- 2.3 Groundwater Depletion Globally -- 2.3.1 Global Estimates of Groundwater Extraction -- 2.3.2 Global Depletion Examples -- 2.3.2.1 High Plains Aquifer, United States -- 2.3.2.2 Northwestern India -- 2.3.2.3 Northeastern China -- 2.3.2.4 Middle East and North Africa (MENA) -- 2.3.2.5 Australia -- 2.3.2.6 Techniques for Assessing Groundwater Depletion -- 2.4 Contamination of Groundwater -- 2.4.1 Land and Aquifer Salinization -- 2.4.1.1 Land Salinization -- 2.4.1.2 Aquifer Salinization -- 2.4.2 Groundwater Contamination Due to Chemicals -- 2.4.3 Groundwater Contamination Due to Microorganisms -- 2.5 The Water-Energy Nexus -- 2.6 Transboundary Water Conflict -- 2.7 Conclusion -- References -- 3: Disentangling the Complexity of Groundwater Dependent Social-ecological Systems -- 3.1 Introduction -- 3.2 Groundwater: An Interaction Space of Several Interdependent Dynamics -- 3.2.1 Crau Aquifer: A Water Circular Economy -- 3.2.2 The Gnangara Mound.
3.2.3 An Enlarged and Integrated Perspective on Groundwater Management -- 3.3 Understanding Hydrogeological Complexity -- 3.3.1 Determinants of Groundwater Resource Quantity -- 3.3.1.1 Aquifer Hydraulic Properties Characterization -- 3.3.1.2 Aquifer Recharge Estimation -- 3.3.1.3 Aquifer Interactions with Surface Water -- 3.3.2 Determinants of Groundwater Quality -- 3.4 Understanding the Complexity of Groundwater-Society Interactions -- 3.4.1 Infrastructures and Increased Human Interference in the Water Cycle -- 3.4.1.1 Groundwater Abstraction -- 3.4.1.2 Irrigation and Drainage -- 3.4.1.3 Artificial Groundwater Recharge -- 3.4.2 The Impacts of Land Use Change on Groundwater -- 3.4.2.1 Agricultural Development and Groundwater -- 3.4.2.2 Urban and Industrial Land Use -- 3.4.3 Energy: Groundwater Policy Interactions -- 3.5 Policies for the IGM-Scape -- 3.5.1 Policy Levers to Promote Sustainable Groundwater Management -- 3.5.1.1 Policies Tackling Components of the IGM-Scape -- 3.5.1.2 Policies Tackling Fluxes in the IGM-scape -- 3.5.2 Pathways Opened Up by These Policy Levers and Others -- 3.5.2.1 Policies with Indirect Effect on Groundwater -- 3.5.2.2 Uncertainties in Groundwater-Related Social-Ecological Systems Dynamics -- 3.5.3 The Governance Challenge Extended -- 3.5.3.1 The Legitimacy Challenge -- 3.5.3.2 Promoting Water at Policy Level -- 3.6 Conclusions -- References -- 4: Groundwater Management Under Global Change: Sustaining Biodiversity, Energy and Food Supplies -- 4.1 Introduction -- 4.2 Implications of Climate Change for Groundwater -- 4.2.1 Direct Impacts from Climate Change -- 4.2.2 Climate Change Mitigation Policies -- 4.2.2.1 New and Emerging Energy Technologies -- Biofuels -- Geothermal -- Unconventional Gas -- Solar Thermal -- Aquifer Thermal Energy Systems -- Fossil Substitution.
4.2.2.2 Risks to Groundwater from Carbon Sequestration in the Landscape -- 4.2.3 Climate Change Adaptation Policies -- 4.2.3.1 Water Supply -- 4.2.3.2 Irrigated Food Production -- 4.2.3.3 Freshwater Biodiversity Conservation -- 4.3 Discussion and Conclusion -- References -- 5: Linking Climate Change and Groundwater -- 5.1 Introduction and Motivation -- 5.1.1 Rising Interest in Impacts of Climate Change on Subsurface Water -- 5.1.2 What Is Global Change? -- 5.2 Climate Projections -- 5.2.1 Global Climate Models -- 5.2.2 Downscaling -- 5.3 An Holistic View of Groundwater Hydrology: Selected Studies -- 5.3.1 Precipitation, Evapotranspiration, and Surface Water Affect Groundwater -- 5.3.2 Soil Water and Vadose Zone Hydrology -- 5.3.3 Saturated Zone/Groundwater -- 5.3.4 Groundwater Recharge -- 5.3.5 Groundwater Discharge -- 5.3.6 Aquifer Flow and Storage -- 5.3.7 Surface-Subsurface Hydrological Interactions -- 5.3.8 Groundwater Quality -- 5.4 Methods for Investigating Global Change Beneath the Surface -- 5.4.1 Age Dating and Chemical Proxies -- 5.4.2 Hydrogeophysical Techniques -- 5.4.3 Remote Sensing of Space-Time Trends -- 5.5 Assessments of Subsurface Hydrology: Numerical Simulations -- 5.6 The Role of Groundwater in the Water-Food-Energy-Climate Nexus -- 5.7 Adapting to Climate Change: Integrated Groundwater Management -- 5.8 Future Directions -- References -- Part II: Governance -- 6: Groundwater Governance in Australia, the European Union and the Western USA -- 6.1 Introduction -- 6.2 Framework for the Assessment of Groundwater Governance -- 6.2.1 Architecture -- 6.2.2 Access and Allocation -- 6.2.3 Accountability -- 6.2.4 Adaptation -- 6.2.5 Agency -- 6.3 Groundwater Governance in Australia, the European Union and the Western United States -- 6.3.1 The Context for Groundwater Governance.
6.3.2 Key Elements of Groundwater Governance in Australia, the EU and the Western USA -- 6.4 Governance Architecture: Principles, Policies and Institutions -- 6.4.1 Australia -- 6.4.2 The European Union (EU) -- 6.4.3 Western USA -- 6.5 Access and Allocation -- 6.5.1 Australia -- 6.5.2 The EU -- 6.5.3 The Western USA -- 6.6 Accountability -- 6.6.1 Australia -- 6.6.2 The EU -- 6.6.3 Western USA -- 6.6.4 Monitoring - A Common Challenge -- 6.7 Adaptation -- 6.7.1 Australia -- 6.7.2 The EU -- 6.7.3 Western USA -- 6.8 Agency -- 6.8.1 Australia -- 6.8.2 The EU -- 6.8.3 Western USA -- 6.8.4 The Influence of Vested Interests -- 6.9 Comparative Assessment of Groundwater Governance in Australia, the EU and the Western USA -- 6.10 Some Groundwater Governance Difficulties and Dilemmas -- 6.11 Conclusions -- References -- 7: Groundwater Law -- 7.1 Introduction -- 7.2 Envisioning Groundwater in Law: Its Nature and Ownership -- 7.2.1 What Is Groundwater, for the Purposes of the Law? -- 7.2.2 Who Owns Groundwater? -- 7.3 Controlling Groundwater Extraction -- 7.3.1 Who Regulates Groundwater Quantity? -- 7.3.2 Macro-Level Controls: Establishing Groundwater Withdrawal Limits Through Plans and Other Means -- Walnut Creek Intensive Groundwater Use Control Area, Kansas -- 7.3.3 Micro Level Controls: Rights, Entitlements and Licences -- 7.3.4 The Challenge of Exempt Uses -- 7.3.5 The Challenge of a Human Right to Water -- 7.3.6 The Challenge of Connecting Groundwater Abstraction to Surface Water and Ecosystems -- Protections for GDEs in the Blue Mountains, New South Wales -- 7.3.7 The Challenge of Connecting Groundwater Abstraction Across Boundaries -- 7.4 Controlling Discharges of Pollution to Groundwater -- 7.4.1 Macro-Level Groundwater Quality Goals -- 7.4.2 Micro-Level Controls: Diffuse and Point Sources -- 7.5 Conclusion -- References.
8: Groundwater Regulation and Integrated Water Planning -- 8.1 Introduction -- 8.2 Challenges Linked to Groundwater Management -- 8.3 Integrated Water Management Framework -- 8.3.1 Water and Its Environment -- 8.3.2 River Basin Management Objectives -- 8.4 Operational Management -- 8.4.1 Pollution Control -- 8.4.2 Voluntary Agreements -- 8.4.3 Cost Recovery -- 8.4.4 Institutional Structure -- 8.5 Planning -- 8.5.1 Functions of Plans and Policies -- 8.5.2 The Planning Process -- 8.5.3 Planning Systems -- 8.6 Analytical Support -- 8.6.1 Analytical Support for Operational Management: Main Challenges -- 8.6.2 Analytical Support and the Strategic Level: New Directions -- 8.7 Internationally Shared Aquifers -- 8.8 Public Participation -- 8.9 The EU Approach -- 8.10 An Example from Michigan, USA: A State Level Approach -- 8.11 The Australian Approach -- 8.11.1 Early Approach -- 8.11.2 The Murray-Darling Basin -- 8.11.3 Groundwater Use -- 8.11.4 National Level Policy -- 8.11.4.1 The National Water Initiative -- 8.11.5 National Groundwater Action Plan -- 8.11.6 Implementation of Policy at State and Local Levels -- 8.11.7 Groundwater Quality -- 8.11.8 Challenging Contemporary Groundwater Management Issues -- References -- 9: Conjunctive Management Through Collective Action -- 9.1 Introduction -- 9.2 Conjunctive Management: Experiences from Australia, Spain and the United States of America -- 9.2.1 Australia -- 9.2.2 Spain -- 9.2.3 United States of America -- 9.3 Discussion and Conclusion -- References -- 10: The Social-Environmental Justice of Groundwater Governance -- 10.1 Why Justice Matters in Water Governance -- 10.2 Challenges of Groundwater Governance -- 10.3 Defining Justice -- 10.4 Why Justice Should Be Considered in Groundwater Governance -- 10.5 Synthesis -- 10.6 Joining the Dots: Justice, Governance and Sustainability -- 10.7 Conclusion.
References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Foreword -- Contents -- Part I: Integration Overview and Problem Settings -- 1: Integrated Groundwater Management: An Overview of Concepts and Challenges -- 1.1 Introduction -- 1.2 Integrated Groundwater Management -- 1.2.1 Issues of Concern -- 1.2.2 Governance -- 1.2.3 Stakeholders -- 1.2.4 Human Setting -- 1.2.5 Natural Setting -- 1.2.6 Spatial Scales -- 1.2.7 Time Scales -- 1.2.8 Disciplines -- 1.2.9 Methods, Models, Other Tools and Data -- 1.2.10 Uncertainty -- 1.3 Integrated Assessment, Modelling, and Other IGM Tools -- 1.4 Book Overview and Key Messages -- 1.4.1 Part I: Integration Overview and Problem Settings -- 1.4.2 Part II: Governance -- 1.4.3 Part III: Biophysical Aspects -- 1.4.4 Part IV: Socioeconomics -- 1.4.5 Part V: Modelling and Decision Support -- References -- 2: The International Scale of the Groundwater Issue -- 2.1 Introduction -- 2.2 The Concept of Groundwater Depletion -- 2.3 Groundwater Depletion Globally -- 2.3.1 Global Estimates of Groundwater Extraction -- 2.3.2 Global Depletion Examples -- 2.3.2.1 High Plains Aquifer, United States -- 2.3.2.2 Northwestern India -- 2.3.2.3 Northeastern China -- 2.3.2.4 Middle East and North Africa (MENA) -- 2.3.2.5 Australia -- 2.3.2.6 Techniques for Assessing Groundwater Depletion -- 2.4 Contamination of Groundwater -- 2.4.1 Land and Aquifer Salinization -- 2.4.1.1 Land Salinization -- 2.4.1.2 Aquifer Salinization -- 2.4.2 Groundwater Contamination Due to Chemicals -- 2.4.3 Groundwater Contamination Due to Microorganisms -- 2.5 The Water-Energy Nexus -- 2.6 Transboundary Water Conflict -- 2.7 Conclusion -- References -- 3: Disentangling the Complexity of Groundwater Dependent Social-ecological Systems -- 3.1 Introduction -- 3.2 Groundwater: An Interaction Space of Several Interdependent Dynamics -- 3.2.1 Crau Aquifer: A Water Circular Economy -- 3.2.2 The Gnangara Mound.

3.2.3 An Enlarged and Integrated Perspective on Groundwater Management -- 3.3 Understanding Hydrogeological Complexity -- 3.3.1 Determinants of Groundwater Resource Quantity -- 3.3.1.1 Aquifer Hydraulic Properties Characterization -- 3.3.1.2 Aquifer Recharge Estimation -- 3.3.1.3 Aquifer Interactions with Surface Water -- 3.3.2 Determinants of Groundwater Quality -- 3.4 Understanding the Complexity of Groundwater-Society Interactions -- 3.4.1 Infrastructures and Increased Human Interference in the Water Cycle -- 3.4.1.1 Groundwater Abstraction -- 3.4.1.2 Irrigation and Drainage -- 3.4.1.3 Artificial Groundwater Recharge -- 3.4.2 The Impacts of Land Use Change on Groundwater -- 3.4.2.1 Agricultural Development and Groundwater -- 3.4.2.2 Urban and Industrial Land Use -- 3.4.3 Energy: Groundwater Policy Interactions -- 3.5 Policies for the IGM-Scape -- 3.5.1 Policy Levers to Promote Sustainable Groundwater Management -- 3.5.1.1 Policies Tackling Components of the IGM-Scape -- 3.5.1.2 Policies Tackling Fluxes in the IGM-scape -- 3.5.2 Pathways Opened Up by These Policy Levers and Others -- 3.5.2.1 Policies with Indirect Effect on Groundwater -- 3.5.2.2 Uncertainties in Groundwater-Related Social-Ecological Systems Dynamics -- 3.5.3 The Governance Challenge Extended -- 3.5.3.1 The Legitimacy Challenge -- 3.5.3.2 Promoting Water at Policy Level -- 3.6 Conclusions -- References -- 4: Groundwater Management Under Global Change: Sustaining Biodiversity, Energy and Food Supplies -- 4.1 Introduction -- 4.2 Implications of Climate Change for Groundwater -- 4.2.1 Direct Impacts from Climate Change -- 4.2.2 Climate Change Mitigation Policies -- 4.2.2.1 New and Emerging Energy Technologies -- Biofuels -- Geothermal -- Unconventional Gas -- Solar Thermal -- Aquifer Thermal Energy Systems -- Fossil Substitution.

4.2.2.2 Risks to Groundwater from Carbon Sequestration in the Landscape -- 4.2.3 Climate Change Adaptation Policies -- 4.2.3.1 Water Supply -- 4.2.3.2 Irrigated Food Production -- 4.2.3.3 Freshwater Biodiversity Conservation -- 4.3 Discussion and Conclusion -- References -- 5: Linking Climate Change and Groundwater -- 5.1 Introduction and Motivation -- 5.1.1 Rising Interest in Impacts of Climate Change on Subsurface Water -- 5.1.2 What Is Global Change? -- 5.2 Climate Projections -- 5.2.1 Global Climate Models -- 5.2.2 Downscaling -- 5.3 An Holistic View of Groundwater Hydrology: Selected Studies -- 5.3.1 Precipitation, Evapotranspiration, and Surface Water Affect Groundwater -- 5.3.2 Soil Water and Vadose Zone Hydrology -- 5.3.3 Saturated Zone/Groundwater -- 5.3.4 Groundwater Recharge -- 5.3.5 Groundwater Discharge -- 5.3.6 Aquifer Flow and Storage -- 5.3.7 Surface-Subsurface Hydrological Interactions -- 5.3.8 Groundwater Quality -- 5.4 Methods for Investigating Global Change Beneath the Surface -- 5.4.1 Age Dating and Chemical Proxies -- 5.4.2 Hydrogeophysical Techniques -- 5.4.3 Remote Sensing of Space-Time Trends -- 5.5 Assessments of Subsurface Hydrology: Numerical Simulations -- 5.6 The Role of Groundwater in the Water-Food-Energy-Climate Nexus -- 5.7 Adapting to Climate Change: Integrated Groundwater Management -- 5.8 Future Directions -- References -- Part II: Governance -- 6: Groundwater Governance in Australia, the European Union and the Western USA -- 6.1 Introduction -- 6.2 Framework for the Assessment of Groundwater Governance -- 6.2.1 Architecture -- 6.2.2 Access and Allocation -- 6.2.3 Accountability -- 6.2.4 Adaptation -- 6.2.5 Agency -- 6.3 Groundwater Governance in Australia, the European Union and the Western United States -- 6.3.1 The Context for Groundwater Governance.

6.3.2 Key Elements of Groundwater Governance in Australia, the EU and the Western USA -- 6.4 Governance Architecture: Principles, Policies and Institutions -- 6.4.1 Australia -- 6.4.2 The European Union (EU) -- 6.4.3 Western USA -- 6.5 Access and Allocation -- 6.5.1 Australia -- 6.5.2 The EU -- 6.5.3 The Western USA -- 6.6 Accountability -- 6.6.1 Australia -- 6.6.2 The EU -- 6.6.3 Western USA -- 6.6.4 Monitoring - A Common Challenge -- 6.7 Adaptation -- 6.7.1 Australia -- 6.7.2 The EU -- 6.7.3 Western USA -- 6.8 Agency -- 6.8.1 Australia -- 6.8.2 The EU -- 6.8.3 Western USA -- 6.8.4 The Influence of Vested Interests -- 6.9 Comparative Assessment of Groundwater Governance in Australia, the EU and the Western USA -- 6.10 Some Groundwater Governance Difficulties and Dilemmas -- 6.11 Conclusions -- References -- 7: Groundwater Law -- 7.1 Introduction -- 7.2 Envisioning Groundwater in Law: Its Nature and Ownership -- 7.2.1 What Is Groundwater, for the Purposes of the Law? -- 7.2.2 Who Owns Groundwater? -- 7.3 Controlling Groundwater Extraction -- 7.3.1 Who Regulates Groundwater Quantity? -- 7.3.2 Macro-Level Controls: Establishing Groundwater Withdrawal Limits Through Plans and Other Means -- Walnut Creek Intensive Groundwater Use Control Area, Kansas -- 7.3.3 Micro Level Controls: Rights, Entitlements and Licences -- 7.3.4 The Challenge of Exempt Uses -- 7.3.5 The Challenge of a Human Right to Water -- 7.3.6 The Challenge of Connecting Groundwater Abstraction to Surface Water and Ecosystems -- Protections for GDEs in the Blue Mountains, New South Wales -- 7.3.7 The Challenge of Connecting Groundwater Abstraction Across Boundaries -- 7.4 Controlling Discharges of Pollution to Groundwater -- 7.4.1 Macro-Level Groundwater Quality Goals -- 7.4.2 Micro-Level Controls: Diffuse and Point Sources -- 7.5 Conclusion -- References.

8: Groundwater Regulation and Integrated Water Planning -- 8.1 Introduction -- 8.2 Challenges Linked to Groundwater Management -- 8.3 Integrated Water Management Framework -- 8.3.1 Water and Its Environment -- 8.3.2 River Basin Management Objectives -- 8.4 Operational Management -- 8.4.1 Pollution Control -- 8.4.2 Voluntary Agreements -- 8.4.3 Cost Recovery -- 8.4.4 Institutional Structure -- 8.5 Planning -- 8.5.1 Functions of Plans and Policies -- 8.5.2 The Planning Process -- 8.5.3 Planning Systems -- 8.6 Analytical Support -- 8.6.1 Analytical Support for Operational Management: Main Challenges -- 8.6.2 Analytical Support and the Strategic Level: New Directions -- 8.7 Internationally Shared Aquifers -- 8.8 Public Participation -- 8.9 The EU Approach -- 8.10 An Example from Michigan, USA: A State Level Approach -- 8.11 The Australian Approach -- 8.11.1 Early Approach -- 8.11.2 The Murray-Darling Basin -- 8.11.3 Groundwater Use -- 8.11.4 National Level Policy -- 8.11.4.1 The National Water Initiative -- 8.11.5 National Groundwater Action Plan -- 8.11.6 Implementation of Policy at State and Local Levels -- 8.11.7 Groundwater Quality -- 8.11.8 Challenging Contemporary Groundwater Management Issues -- References -- 9: Conjunctive Management Through Collective Action -- 9.1 Introduction -- 9.2 Conjunctive Management: Experiences from Australia, Spain and the United States of America -- 9.2.1 Australia -- 9.2.2 Spain -- 9.2.3 United States of America -- 9.3 Discussion and Conclusion -- References -- 10: The Social-Environmental Justice of Groundwater Governance -- 10.1 Why Justice Matters in Water Governance -- 10.2 Challenges of Groundwater Governance -- 10.3 Defining Justice -- 10.4 Why Justice Should Be Considered in Groundwater Governance -- 10.5 Synthesis -- 10.6 Joining the Dots: Justice, Governance and Sustainability -- 10.7 Conclusion.

References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.