New Horizons for a Data-Driven Economy : A Roadmap for Usage and Exploitation of Big Data in Europe.
Material type: TextPublisher: Cham : Springer International Publishing AG, 2016Copyright date: {copy}2016Edition: 1st edDescription: 1 online resource (312 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9783319215693Genre/Form: Electronic books.Additional physical formats: Print version:: New Horizons for a Data-Driven EconomyLOC classification: QA75.5-76.95Online resources: Click to ViewIntro -- Foreword -- Foreword -- Preface -- Book Acknowledgements -- Project Acknowledgements -- Contents -- List of Contributors -- Part I: The Big Data Opportunity -- Chapter 1: The Big Data Value Opportunity -- 1.1 Introduction -- 1.2 Harnessing Big Data -- 1.3 A Vision for Big Data in 2020 -- 1.3.1 Transformation of Industry Sectors -- 1.4 A Big Data Innovation Ecosystem -- 1.4.1 The Dimensions of European Big Data Ecosystem -- 1.5 Summary -- References -- Chapter 2: The BIG Project -- 2.1 Introduction -- 2.2 Project Mission -- 2.3 Strategic Objectives -- 2.4 Consortium -- 2.5 Stakeholder Engagement -- 2.6 Project Structure -- 2.7 Methodology -- 2.7.1 Technology State of the Art and Sector Analysis -- 2.7.1.1 Technical Working Groups -- 2.7.1.2 Sectorial Forums -- 2.7.2 Cross-Sectorial Roadmapping -- 2.7.2.1 Consolidation -- 2.7.2.2 Mapping -- 2.7.2.3 Temporal Alignment -- 2.8 Big Data Public Private Partnership -- 2.9 Summary -- References -- Part II: The Big Data Value Chain: Enabling and Value Creating Technologies -- Chapter 3: The Big Data Value Chain: Definitions, Concepts, and Theoretical Approaches -- 3.1 Introduction -- 3.2 What Is Big Data? -- 3.3 The Big Data Value Chain -- 3.4 Ecosystems -- 3.4.1 Big Data Ecosystems -- 3.4.2 European Big Data Ecosystem -- 3.4.3 Toward a Big Data Ecosystem -- 3.5 Summary -- References -- Chapter 4: Big Data Acquisition -- 4.1 Introduction -- 4.2 Key Insights for Big Data Acquisition -- 4.3 Social and Economic Impact of Big Data Acquisition -- 4.4 Big Data Acquisition: State of the Art -- 4.4.1 Protocols -- 4.4.1.1 AMQP -- 4.4.1.2 Java Message Service -- 4.4.2 Software Tools -- 4.4.2.1 Storm -- 4.4.2.2 S4 -- 4.4.2.3 Kafka -- 4.4.2.4 Flume -- 4.4.2.5 Hadoop -- 4.5 Future Requirements and Emerging Trends for Big Data Acquisition -- 4.6 Sector Case Studies for Big Data Acquisition.
4.6.1 Health Sector -- 4.6.2 Manufacturing, Retail, and Transport -- 4.6.3 Government, Public, Non-profit -- 4.6.3.1 Tax Collection Area -- 4.6.3.2 Energy Consumption -- 4.6.4 Media and Entertainment -- 4.6.5 Finance and Insurance -- 4.7 Conclusions -- References -- Chapter 5: Big Data Analysis -- 5.1 Introduction -- 5.2 Key Insights for Big Data Analysis -- 5.3 Big Data Analysis State of the Art -- 5.3.1 Large-Scale: Reasoning, Benchmarking, and Machine Learning -- 5.3.1.1 Large-Scale Reasoning -- 5.3.1.2 Benchmarking for Large-Scale Repositories -- 5.3.1.3 Large-Scale Machine Learning -- 5.3.2 Stream Data Processing -- 5.3.2.1 RDF Data Stream Pattern Matching -- 5.3.2.2 Complex Event Processing -- 5.3.3 Use of Linked Data and Semantic Approaches to Big Data Analysis -- 5.3.3.1 Entity Summarization -- 5.3.3.2 Data Abstraction Based on Ontologies and Communication Workflow Patterns -- 5.4 Future Requirements and Emerging Trends for Big Data Analysis -- 5.4.1 Future Requirements for Big Data Analysis -- 5.4.1.1 Next Generation Big Data Technologies -- 5.4.1.2 Simplicity -- 5.4.1.3 Data -- 5.4.1.4 Languages -- 5.4.2 Emerging Paradigms for Big Data Analysis -- 5.4.2.1 Communities -- 5.4.2.2 Academic Impact -- 5.5 Sectors Case Studies for Big Data Analysis -- 5.5.1 Public Sector -- 5.5.1.1 Traffic -- 5.5.1.2 Emergency Response -- 5.5.2 Health -- 5.5.3 Retail -- 5.5.4 Logistics -- 5.5.5 Finance -- 5.6 Conclusions -- References -- Chapter 6: Big Data Curation -- 6.1 Introduction -- 6.2 Key Insights for Big Data Curation -- 6.3 Emerging Requirements for Big Data Curation -- 6.4 Social and Economic Impact of Big Data Curation -- 6.5 Big Data Curation State of the Art -- 6.5.1 Data Curation Platforms -- 6.6 Future Requirements and Emerging Trends for Big Data Curation -- 6.6.1 Future Requirements for Big Data Curation.
6.6.2 Emerging Paradigms for Big Data Curation -- 6.6.2.1 Social Incentives and Engagement Mechanisms -- 6.6.2.2 Economic Models -- 6.6.2.3 Curation at Scale -- 6.6.2.4 Human-Data Interaction -- 6.6.2.5 Trust -- 6.6.2.6 Standardization and Interoperability -- 6.6.2.7 Data Curation Models -- 6.6.2.8 Unstructured and Structured Data Integration -- 6.7 Sectors Case Studies for Big Data Curation -- 6.7.1 Health and Life Sciences -- 6.7.1.1 ChemSpider -- 6.7.1.2 Protein Data Bank -- 6.7.1.3 FoldIt -- 6.7.2 Media and Entertainment -- 6.7.2.1 Press Association -- 6.7.2.2 The New York Times -- 6.7.3 Retail -- 6.7.3.1 eBay -- 6.7.3.2 Unilever -- 6.8 Conclusions -- References -- Chapter 7: Big Data Storage -- 7.1 Introduction -- 7.2 Key Insights for Big Data Storage -- 7.3 Social and Economic Impact of Big Data Storage -- 7.4 Big Data Storage State-of-the-Art -- 7.4.1 Data Storage Technologies -- 7.4.1.1 NoSQL Databases -- 7.4.1.2 NewSQL Databases -- 7.4.1.3 Big Data Query Platforms -- 7.4.1.4 Cloud Storage -- 7.4.2 Privacy and Security -- 7.4.2.1 Security Best Practices for Non-relational Data Stores -- 7.4.2.2 Secure Data Storage and Transaction Logs -- 7.4.2.3 Cryptographically Enforced Access Control and Secure Communication -- 7.4.2.4 Security and Privacy Challenges for Granular Access Control -- 7.4.2.5 Data Provenance -- 7.4.2.6 Privacy Challenges in Big Data Storage -- 7.5 Future Requirements and Emerging Paradigms for Big Data Storage -- 7.5.1 Future Requirements for Big Data Storage -- 7.5.1.1 Standardized Query Interfaces -- 7.5.1.2 Security and Privacy -- 7.5.1.3 Semantic Data Models -- 7.5.2 Emerging Paradigms for Big Data Storage -- 7.5.2.1 Increased Use of NoSQL Databases -- 7.5.2.2 In-Memory and Column-Oriented Designs -- 7.5.2.3 Convergence with Analytics Frameworks -- 7.5.2.4 The Data Hub -- 7.6 Sector Case Studies for Big Data Storage.
7.6.1 Health Sector: Social Media-Based Medication Intelligence -- 7.6.2 Finance Sector: Centralized Data Hub -- 7.6.3 Energy: Device Level Metering -- 7.7 Conclusions -- References -- Chapter 8: Big Data Usage -- 8.1 Introduction -- 8.2 Key Insights for Big Data Usage -- 8.3 Social and Economic Impact for Big Data Usage -- 8.4 Big Data Usage State-of-the-Art -- 8.4.1 Big Data Usage Technology Stacks -- 8.4.1.1 Trade-Offs in Big Data Usage Technologies -- 8.4.2 Decision Support -- 8.4.3 Predictive Analysis -- 8.4.3.1 New Business Model -- 8.4.4 Exploration -- 8.4.5 Iterative Analysis -- 8.4.6 Visualization -- 8.4.6.1 Visual Analytics -- 8.5 Future Requirements and Emerging Trends for Big Data Usage -- 8.5.1 Future Requirements for Big Data Usage -- 8.5.1.1 Specific Requirements -- 8.5.1.2 Industry 4.0 -- 8.5.1.3 Iterative Data Streams -- 8.5.1.4 Visualization -- 8.5.2 Emerging Paradigms for Big Data Usage -- 8.5.2.1 Smart Data -- 8.5.2.2 Big Data Usage in an Integrated and Service-Based Environment -- 8.5.2.3 Service Integration -- 8.5.2.4 Complex Exploration -- 8.6 Sectors Case Studies for Big Data Usage -- 8.6.1 Healthcare: Clinical Decision Support -- 8.6.2 Public Sector: Monitoring and Supervision of Online Gambling Operators -- 8.6.3 Telco, Media, and Entertainment: Dynamic Bandwidth Increase -- 8.6.4 Manufacturing: Predictive Analysis -- 8.7 Conclusions -- References -- Part III: Usage and Exploitation of Big Data -- Chapter 9: Big Data-Driven Innovation in Industrial Sectors -- 9.1 Introduction -- 9.2 Big Data-Driven Innovation -- 9.3 Transformation in Sectors -- 9.3.1 Healthcare -- 9.3.2 Public Sector -- 9.3.3 Finance and Insurance -- 9.3.4 Energy and Transport -- 9.3.5 Media and Entertainment -- 9.3.6 Telecommunication -- 9.3.7 Retail -- 9.3.8 Manufacturing -- 9.4 Discussion and Analysis -- 9.5 Conclusion and Recommendations -- References.
Chapter 10: Big Data in the Health Sector -- 10.1 Introduction -- 10.2 Analysis of Industrial Needs in the Health Sector -- 10.3 Potential Big Data Applications for Health -- 10.4 Drivers and Constraints for Big Data in Health -- 10.4.1 Drivers -- 10.4.2 Constraints -- 10.5 Available Health Data Resources -- 10.6 Health Sector Requirements -- 10.6.1 Non-technical Requirements -- 10.6.2 Technical Requirements -- 10.7 Technology Roadmap for Big Data in the Health Sector -- 10.7.1 Semantic Data Enrichment -- 10.7.2 Data Sharing and Integration -- 10.7.3 Data Privacy and Security -- 10.7.4 Data Quality -- 10.8 Conclusion and Recommendations for Health Sector -- References -- Chapter 11: Big Data in the Public Sector -- 11.1 Introduction -- 11.1.1 Big Data for the Public Sector -- 11.1.2 Market Impact of Big Data -- 11.2 Analysis of Industrial Needs in the Public Sector -- 11.3 Potential Big Data Applications for the Public Sector -- 11.4 Drivers and Constraints for Big Data in the Public Sector -- 11.4.1 Drivers -- 11.4.2 Constraints -- 11.5 Available Public Sector Data Resources -- 11.6 Public Sector Requirements -- 11.6.1 Non-technical Requirements -- 11.6.2 Technical Requirements -- 11.7 Technology Roadmap for Big Data in the Public Sector -- 11.7.1 Pattern Discovery -- 11.7.2 Data Sharing/Data Integration -- 11.7.3 Real-Time Insights -- 11.7.4 Data Security and Privacy -- 11.7.5 Real-Time Data Transmission -- 11.7.6 Natural Language Analytics -- 11.7.7 Predictive Analytics -- 11.7.8 Modelling and Simulation -- 11.8 Conclusion and Recommendations for the Public Sector -- References -- Chapter 12: Big Data in the Finance and Insurance Sectors -- 12.1 Introduction -- 12.1.1 Market Impact of Big Data -- 12.2 Analysis of Industrial Needs in the Finance and Insurance Sectors -- 12.3 Potential Big Data Applications in Finance and Insurance.
12.4 Drivers and Constraints for Big Data in the Finance and Insurance Sectors.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.