Sensory Ecology of Disease Vectors. (Record no. 314521)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 12047nam a22004693i 4500 |
001 - CONTROL NUMBER | |
control field | EBC30349695 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240122001954.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS | |
fixed length control field | m o d | |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION | |
fixed length control field | cr cnu|||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 231124s2022 xx o ||||0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9789086869329 |
Qualifying information | (electronic bk.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
Canceled/invalid ISBN | 9789086863808 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (MiAaPQ)EBC30349695 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (Au-PeEL)EBL30349695 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)1366058563 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | MiAaPQ |
Language of cataloging | eng |
Description conventions | rda |
-- | pn |
Transcribing agency | MiAaPQ |
Modifying agency | MiAaPQ |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Ignell, R. |
245 10 - TITLE STATEMENT | |
Title | Sensory Ecology of Disease Vectors. |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | Wageningen : |
Name of producer, publisher, distributor, manufacturer | Wageningen Academic Publishers, |
Date of production, publication, distribution, manufacture, or copyright notice | 2022. |
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Date of production, publication, distribution, manufacture, or copyright notice | �2022. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 1 online resource (914 pages) |
336 ## - CONTENT TYPE | |
Content type term | text |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type term | computer |
Media type code | c |
Source | rdamedia |
338 ## - CARRIER TYPE | |
Carrier type term | online resource |
Carrier type code | cr |
Source | rdacarrier |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Intro -- Table of content -- Chapter 1 - Resource location in a complex sensory landscape -- Abstract -- 1.1 Our association with blood-feeding arthropods -- 1.2 Control -- 1.3 The nature of the resources -- 1.4 Landscape -- 1.5 The search -- 1.6 The array of the senses -- 1.7 The way forward -- References -- Chapter 2 - Comparative morphology of the peripheral olfactory system of disease vector arthropods -- Abstract -- 2.1 General morphology of the olfactory system of disease vector arthropods -- 2.2 Comparative morphology of the peripheral olfactory system -- 2.3 Functional and evolutionary aspects of olfactory sensilla -- 2.4 Concluding remarks -- References -- Chapter 3 - The molecular and neural determinants of olfactory behaviour in mosquitoes -- Abstract -- 3.1 Introduction -- 3.2 The mosquito olfactory system -- 3.3 Olfactory detection in the maxillary palps -- 3.4 Olfactory detection in the antennae -- 3.5 Conclusions and perspectives -- References -- Chapter 4 - Chemosensory system of tsetse flies (Diptera: Glossinidae) -- Abstract -- 4.1 Introduction -- 4.2 Tsetse olfactory sensilla and sensillum types -- 4.3 Role of olfaction in tsetse reproduction -- 4.4 Identification and characterisation of tsetse chemosensory-related proteins -- 4.5 Perspectives and conclusions -- References -- Chapter 5 - The olfactory system of human lice -- Abstract -- 5.1 Biology of human lice -- 5.2 Organisation of the olfactory system -- 5.3 Response to host cues -- 5.4 Response to intraspecific cues -- 5.5 Response to repellent compounds -- 5.6 Molecular aspects of odorant reception -- 5.7 Conclusions -- References -- Chapter 6 - Molecular basis of olfaction in kissing bugs -- Abstract -- 6.1 Introduction -- 6.2 Molecular olfactory machinery in triatomines -- 6.3 Expression and functional studies on olfactory-related genes in triatomines. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 6.4 Perspectives -- References -- Chapter 7 - Behavioural ecology of plant-mosquito relations -- Abstract -- 7.1 Introduction -- 7.2 Role of plants in adult mosquito behaviour: a summary -- 7.3 Unsettled behavioural questions -- References -- Chapter 8 - Chemical ecology of sand fly plant-feeding behaviour -- Abstract -- 8.1 Introduction -- 8.2 Plant sources exploited by sand flies -- 8.3 Nutrient reward and impact of host-plant feeding on sand flies -- 8.4 Sand fly behaviour and selection of suitable host plants -- 8.5 Perspectives on plant-host feeding to sand fly surveillance and disease control -- 8.6 Conclusions -- References -- Chapter 9 - Odour-mediated host selection and discrimination in mosquitoes -- Abstract -- 9.1 Introduction -- 9.2 Methods to assess mosquito host choice and preference -- 9.3 Mosquito olfaction, host odorants and blends -- 9.4 Genes, receptors and neurons underlying host preference -- 9.5 Evolution of host specialisation in mosquitoes -- 9.6 Conclusion and future perspectives -- Acknowledgements -- References -- Chapter 10 - Olfactory-driven behaviours in kissing bugs -- Abstract -- 10.1 General features of kissing-bug behaviour: stealing blood is a dangerous task -- 10.2 Kissing-bug activity profiles and behavioural features: scarce data beside model species -- 10.3 The hemimetabolous way of life: being a blood sucker since egg hatching -- 10.4 Being silent while reaching a blood donor: risks and strategy -- 10.5 Aggregations inside shelters: chemical mechanisms cannot be generalised -- 10.6 Danger in the colony: alarm pheromones and lack of evidence for a defensive role -- 10.7 Sex living in small colonies -- 10.8 Pending questions and future directions -- References -- Chapter 11 - Host-seeking behaviour and its application for surveillance and control of sand flies -- Abstract -- 11.1 Introduction. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 11.2 Intrinsic biological factors controlling sand fly host-seeking behaviour -- 11.3 Chemical cues for host location -- 11.4 Physical cues for host location -- 11.5 Sand fly biting and blood-feeding behaviour -- 11.6 Sand fly host preferences -- 11.7 Interaction of host-seeking and mating behaviours in sand flies -- 11.8 Role of kairomones of Leishmania-infected hosts -- 11.9 Proposed model for sand fly host seeking -- 11.10 Implications for the epidemiology and control of leishmaniasis -- 11.11 Utilisation of host attractants for surveillance and control of sand flies -- 11.12 Conclusions and perspectives -- References -- Chapter 12 - Effects of pathogens on mosquito host-seeking and feeding behaviour -- Abstract -- 12.1 Introduction -- 12.2 Pathogen lifecycle and transmission -- 12.3 Direct effects of pathogen infection -- 12.4 Indirect effects of pathogen infection -- 12.5 Broader implications -- 12.6 Conclusions -- References -- Chapter 13 - Sand fly sex/aggregation pheromones -- Abstract -- 13.1 Introduction -- 13.2 Identification of sex/aggregation pheromones in sand flies -- 13.3 The potential of sex/aggregation pheromones for use in control and monitoring -- 13.4 Conclusions and future work -- References -- Chapter 14 - Odour-mediated oviposition-site selection by mosquitoes -- Abstract -- 14.1 Introduction -- 14.2 Cues regulating oviposition-site selection -- 14.3 Sensory and molecular correlates for oviposition-site selection -- 14.4 Vector control perspectives -- 14.5 Conclusions -- References -- Chapter 15 - Tick pheromones -- Abstract -- 15.1 Introduction -- 15.2 Types of pheromones -- 15.3 Grouping pheromones -- 15.4 Physiological pheromones -- 15.5 Applied uses of tick pheromones -- 15.6 Surveillance and control -- 15.7 Future directions -- References -- Chapter 16 - Host-plant feeding in mosquitoes -- Abstract -- 16.1 Introduction. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 16.2 The role of host-plant feeding in mosquitoes -- 16.3 Taste sensory apparatus involved in host-plant feeding -- 16.4 Control of host-plant feeding -- 16.5 Taste sensory responses to plant-derived fluids -- 16.6 Molecular basis of host-plant taste -- 16.7 Concluding remarks -- Acknowledgements -- References -- Chapter 17 - Phagostimulants drive the acceptance of a blood meal in disease vectors -- Abstract -- 17.1 Introduction -- 17.2 The behavioural events prior to blood feeding -- 17.3 The structure and role of labral sensilla in blood feeding -- 17.4 Taste modalities associated with haematophagy -- 17.5 Other factors affecting phagostimulation -- 17.6 Mechanism underlying the detection of phagostimulants -- 17.7 Conclusions -- References -- Chapter 18 - Salt perception in disease vectors -- Abstract -- 18.1 Introduction -- 18.2 Salt concentration drives acceptance and rejection behaviours -- 18.3 Chemosensory organs involved in salt detection -- 18.4 Molecular mechanisms of salt sensing -- 18.5 Salt processing centres -- 18.6 Final remarks -- Acknowledgements -- References -- Chapter 19 - Vision in mosquitoes -- Abstract -- 19.1 Introduction -- 19.2 The mosquito eye: structure and function -- 19.3 Locating resources: visually-guided opto-motor anemotaxis -- 19.4 Sexual dimorphism in mosquito eyes -- 19.5 Swarming -- 19.6 Host-seeking -- 19.7 Oviposition -- References -- Chapter 20 - Olfactory and visual integration in oviposition site selection of sand flies -- Abstract -- 20.1 Introduction -- 20.2 Breeding sites of phlebotomine sand flies -- 20.3 Oviposition attraction and stimulation in of phlebotomine sand flies -- 20.4 Implications and applications -- 20.5 Knowledge gaps and directions for future research -- Supplementary material -- References -- Chapter 21 - Biting flies and zebra stripes -- Abstract -- 21.1 Reasons that zebras are striped. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | 21.2 How generalisable are the biting fly findings? -- 21.3 Underlying mechanisms by which stripes could exert effects on tabanids -- 21.4 Assumptions about biting flies being the evolutionary driver of striping -- 21.5 Future directions -- Acknowledgements -- References -- Chapter 22 - Mosquito heat seeking -- Abstract -- 22.1 Heat-seeking: a key step in the process of blood feeding by female mosquitoes -- 22.2 The discovery of heat seeking and its links to thermosensation -- 22.3 The antenna as a site for the detection of host-associated thermal cues -- 22.4 Candidate molecular receptors important for heat seeking: clues from Drosophila -- 22.5 The conserved ionotropic receptor 21a mediates cooling detection in Drosophila -- 22.6 IR21a mediates cooling detection and heat seeking in Anopheles gambiae -- 22.7 Heat seeking involves species-, sex- and context-specific thermosensory processing -- 22.8 Identifying additional thermosensory pathways that operate to drive heat seeking -- 22.9 The multiple independent evolutionary origins of heat seeking in arthropods -- 22.10 Investigating the processing of thermosensory information in the mosquito brain -- 22.11 Future directions -- References -- Chapter 23 - The thermal sense of kissing bugs -- Abstract -- 23.1 Introduction -- 23.2 Heat exchange -- 23.3 Thermal reception -- 23.4 Thermal orientation -- 23.5 The evaluation of thermal sources -- 23.6 Bimodal convergence: heat and humidity -- 23.7 Thermal preference and behavioural thermoregulation -- 23.8 Heat as a Zeitgeber -- 23.9 Thermal sensitivity and food recognition -- 23.10 Conclusions and perspectives -- References -- Chapter 24 - Host detection by ticks -- Abstract -- 24.1 Introduction -- 24.2 Behaviour -- 24.3 Peripheral sense organs -- 24.4 Parasite-mediated host detection -- 24.5 Model of host detection -- 24.6 Future research directions. |
505 8# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Acknowledgements. |
520 ## - SUMMARY, ETC. | |
Summary, etc. | How do arthropods that transmit human pathogens perceive their world? The answer is essential for controlling the spread of vector-borne diseases in a rational way, and can help solve a major problem in current times. This state-of-the-art compendium, written for students and researchers in the Life Sciences, shows how these organisms use their sensory abilities to obtain and make use of cues and signals to find and discriminate among various resources.'Sensory Ecology of Disease Vectors' covers diverse topics on a broad range of species. It provides a series of clear examples of how distantly related organisms, such as mosquitoes, ticks, kissing bugs, and flies, have solved similar problems to manage their needs for food, sexual partners, hiding places and where to lay their eggs.'Sensory Ecology of Disease Vectors' brings together the combined knowledge and experience of researchers around the globe to offer novel perspectives on how arthropods use their senses to interact with their environment, and to our intense regret, us. |
588 ## - SOURCE OF DESCRIPTION NOTE | |
Source of description note | Description based on publisher supplied metadata and other sources. |
590 ## - LOCAL NOTE (RLIN) | |
Local note | Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. |
655 #4 - INDEX TERM--GENRE/FORM | |
Genre/form data or focus term | Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Lazzari, C. R. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Lorenzo, M. G. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY | |
Relationship information | Print version: |
Main entry heading | Ignell, R. |
Title | Sensory Ecology of Disease Vectors |
Place, publisher, and date of publication | Wageningen : Wageningen Academic Publishers,c2022 |
International Standard Book Number | 9789086863808 |
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN) | |
Corporate name or jurisdiction name as entry element | ProQuest (Firm) |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://ebookcentral.proquest.com/lib/bacm-ebooks/detail.action?docID=30349695">https://ebookcentral.proquest.com/lib/bacm-ebooks/detail.action?docID=30349695</a> |
Public note | Click to View |
No items available.